AT AT e U A 0%, 0 e R B1a e BYe 0¥e 8Py 0V APy 4¥0 670 0V 60 B0 0% 6°0.0%8 0 0 0 08 Bt 0al Fab 6at 0,0 Ba® Bn® B 028 Br? 0ab tat Bat b Gt $o 92 0t 4t o QAT 0at Wa' fa?
. . . i H i . 5 - - . u .

]
- '
. y "
. DI FILE Coey cid ot G
b Frnal repor 3
ki M .
o 0
o0)
1o Contract N00014-86-K-0204 '
(o) d
(o)) "
- i
| g GENERATING FAST,
) | g
| 0 ERROR RECOVERING PARSERS :
B
b ’
y §:
Robert W. Gray
B.S., University of Maryland, 1977 ;
\
o
DTIC
K ELECTER |
) % b 4 (]
¢ & MAY 1 91983 14 | 3
’: ;
.1: "
{ A thesis submitted to the
\ : g
Y Faculty of the Graduate School of the -
: University of Colorado in partial fulfillment
)
; of the requirements for the degree of o
Master of Science]
.» 5]
y Department of Computer Science s
o
1987
’)
. i,
. ISTRIBUTION STATEMENT A &0 & ; T N
! Approved for public release; ~ .
y Distribution Unlimited
k)

[..

b

i

)

A AT Ty AT Ve Ty

AT T

(R AR N A N VLR UR GV LS L O O O I T O T o I T T Y T O O Ty

This thesis for the Masters of Science degree by
Robert William Gray
has been approved for the
Department of

Computer Science

by
/ , .
p S . ° /"
N VAR
William M. Waite
7‘11 # ;{'} ' {/ : - o e
Lloyd D. Fosdick

e ' , C
v UJ@ 7 i/@b%

John M. Gary

77 AP/
ya

Paul K. Harter

Date J; ipl’// /?87

A A S B R R R

. '-’)rm;r"-,!’_-}' \

h)

r

o o R B
By 2

-
v

-

('.

o

1;‘.‘/», ‘)AJH‘

PR R AR A

OO e 0 W i N
Nt l ‘\' .h'.l B

007 Ut 0a¥ 10 Fat 0 0 0ot 0ot 0 8 90 00060, 6" 00" 0% 47 1% 4 '8 %a" 1", WL 9%k Yot Ak ARt ANy

iii
Gray, Robert William (M.S., Computer Science)

Generating Fast, Error Recovering Parsers

_Thesis directed by Professor William M. Waite

VAR PN /o

Although parser generators have provided significant power for language
recognition tasks, many of them are deficient in error recovery. Of the ones that do
provide error recovery, manv of these produce unacceptably slow parsers. I have
desxgncd’ﬁ?\. i\mplcmented a parser generator that produces fast, error recovering
parsers. The high speed of the parser is a result of making the code directly execut-
able, and paying careful attention to implementation details. The error recovery
technique guarantees that a syntactically correct parse tree will be delivered after
parsing has completed no matter what the input. This is important so that remain-
ing compilation phases will not have to deal with infinitely many special cases of
incorrect parse trees. Measurements show that the generated parser runs faster than
any other parser examined, including hand-written recursive descent parsers. The
cost of this fast parser is a slight increase in space requirements. Although this par-
ticular generator requires LL grammars, the ideas can be applied to generators tak-

ing LALR grammars. Furthermore, there is evidence that most LALR grammars

for programming languages can be automatically converted to cqu1valent LL gram-

, Accession For

mars. 7 NTIS GRA&L w |

DTIC TAB O
FRENEEN Unanniowiced 0
. A
v, Justifioatton_ _
$ie) o

Avallability Codes

iAvall and/or
btst | Speoial

NI
M

l

l
LR
R ‘ ﬁuw
- !{_ ridution/

W v W R P LG e i ™ T T e T T T T Tt W W P
Ay ahahate A -Q"\. 5 \.._\\"\-, Yo S A R R S A RS

FL

-‘e’e

Pl o =
.

-3:'

-

Y

AL SRS Y
A - o

o

ALY

PP L A N
' (‘:': "r.l"lﬁ

"-f‘f {r

a
N e

P XA

-'_‘J'

i aE Vad Wab Sad tad Yad U2 4V, 5 RO R KRR RN AN VDU KA ¢, % ¢ sl tal ted KU TR T R COUVTRY TORNKNN O

\
e
*
o\
. '(
iv)
O
ACKNOWLEDGEMENTS o
’
pp
o
Professor William Waite has long known that fast parsing speed and reli- N
able error recovery are crucial to practical compilers. His interest and curiosity in 7
¢
%
this area infected me. I thank him for patiently giving hours of his time, and pro- :
')
3
viding an exciting, stimulating research environment. ;
Professor Lloyd Fosdick and John Gary graciously allowed me to pursue 2‘.
this thesis while I worked on their supercomputer compiler project. S-‘
A
Mark Hall challenged our Software Engineering Group to construct a !_:,_)
generator of fast parsers. .
Andreas Lemke helped me with grammar transformations using Ops83.)
Professor Jon Shultis introduced me to the ML language and additional ML assis- :
Ry
tance was provided by Hal Eden. ;::
o5
Thanks to Karen and Tori for their company and good food, usually late 3
o~
at night. I regularly counted on the help and support of Carmen, David, Dotty, 2
" 3
Elisa, Evi, Francesca, Halfdan, Kathy, Paul, and especially my brothers, sisters and o
parents. o
This work was supported in part by the National Bureau of Standards o
bt
70NANB5HO0506, the Army Research Office DAAL 03-86-K-0100, and the Office 3
~ 3
~"

of Naval Research N00014-86-K-0204.

[

.(v

A}
a
»
by
\

580,870 Fg Va8 0
DAULTOL OO WA WA 4

L f§.8

A vt Gt et a8 0t daY e faT it 0 *b e™9 a'boate. a’t.g" VB0 AN a0l B0 0 Yab 2 Yal iat Dal Vb tab.fad. 6 R R T D Y ON U S U Y s . ;
4 9 4

CHAPTER

CONTENTS

..

...

...

1.3. A Directly Executable Parser with Error Recoveryccc......

1.4. Thesis Statement and Organizationcc.ccceverveeveneesecinernsnnens

2. DIRECTLY EXECUTABLE PARSERcccoooniviiniiiniincnncnenene

2.1. Motivation ...

...

2.2. Recursive Descent Parsingc.o..covevveeevviiieeneineeeneesnecvessnesennes

23 SYNPUT ...ttt aesee e se e st st snesesesenanas

..

3.2. Automatic Error RECOVETYccoiiiciiiiiiiniiciinniecreecne e

3.3, IMPIeMENtatiONccoveiiireiiiierineae it svesneessessaessssesssesrsesssessans

4. PERFORMANCE

...

4.1, Performance Detailsccccceiiiiiiriereerriiiiniiieeiereieeereressnssisssaeesieeen

4.2. Comparison

..

10

10

11

13

19

26
28
32
37
37

39

B SOR AR ANAN

TR

Tl Rty
i

R

R P
X W O,

Fatio e A

Pt RN o 4 Xy
3t A & 1'4.

o
.’]
AT

o R O R Y PO YR SO T PO T WO WL TS ST M ¥l WML WA R L o LW DLW U U LA UL U LWL U LW U RIOCOVAR AN

vi
5. CONCLUSIONS .ottt eeae i e s e essrsssesesssesannaes 42

BIBLIOGRAPHY .oooooeeeieieeeeeeceeseeseresessesessesessessssssesensessssessssensosenessssnencs 45)

OO H

e

g

AT (T

S

-
-

ity ot £
WA,

g I’J;J

v - 1o -
NS

A
-

[t o= g)

(5

oA MRSy

,v’!- -_w

o
a

LI N

T A N T e -.‘r-u'-."\".‘-'-.'a‘-.'\.‘\"x-.‘\\’.'- VA

I P W M W U MU N U N M R R R e T e et Sa’ gt S _hat Bad Qo gat " oy g0 ot fat AT

.....

CHAPTER 1

INTRODUCTION

))';

A parser is the part of a compiler that recpgnizcs the structure of the
input language. It should be time and space efﬁcienbo iI‘i}should be user friendlyy
that is, present clear and concise diagnostics for syntax errors. A parser should
also be maintainable; that is, a small change or fix should only require a small
amount of effort. ' Without the aid of tools, it is difficult to build a correct parser
that includes all of these attributes. This thesis describes the design and

implementation of parser generation software.

Section 1.1 will establish the context for discussing parsing and define
the terms used. Section 1.2 describes and comments on the strengths and
{ weaknesses of a number of existing tools for generating parsers that do not meet
all of the design criteria. Section 1.3 sketches the design of a parser that meets

the criteria. Section 1.4 presents the overall organization of the thesis and the

thesis statement.

g

1.1. Background

Before focusing on the particular problems of parsing, it is important to
understand the context in which it occurs. As shown in Figure 1, a compiler is a
program that reads a program in a source language and translates it into an

equivalent program in a farget language. An important part of this process is the

SRR AT NN

O AT WL

'-'."‘y'-’\-\'h*\\-\'\ - >
L

A A A S g 2N

e Xn G

L4

Al T
b

R I

¥ial

[y

“x

A K

FIT S v
>

KA A

Gl

~a
-

e AT

e -
el

E.d

=

By &Gy, G

2’ g dn w4

P ol o

4

)

L)

B R
DAL

B v R,

T TS S R O T R R O R R T R O T R I N N N U Y I DV U T IR TN IS Iy

2
reporting of errors in the source program to the user. Figure 2 shows the
decomposition of a compiler and the flow of data through its constituents. The
first level of decomposition divides compilation into analysis and synthesis
phases. To determine the meaning of the source program, analysis breaks up the
source program into its constituent parts and creates an intermediate

representation of the source program called structure tree. The name derives from

source . target
————{ compiler —=——»
program program
erfor
mesgages

Figure 1. The Compiler

Compiler
Analysis Synthesis
tructural Semantic|structure | - target
Analysis Analysis| tree CodeGen tree Assem
tion tarfet
seqpence program

Lexical | token
Analysis |sequence

soyrce
program

Figure 2. The Decomposition of a Compiler (arrows show data flow)

» R e s » B
L

Ay v T

LIS E S

b

4 3 9w
g

O P A A N T T R T/ S G o AR A A AT A T

BN LA LR A R TR COUR R RN C o - v " R
i Y, i, U LW U L USROS PR e . LN LAY G gy M S AP ia® e v it Bt . ; WY (o

- 3
the fact that it is usually conceptualized as a tree whose structure represents the
control and data flow of the program. The synthesis phase constructs the desired

equivalent target program from the structure tree.

Analysis is the more formalized of the two major compiler tasks. It is
generally broken down into two parts: structural analysis and semantic analysis.
Structural analysis determines the static structure of the source program, and
semantic analysis checks that substrings of the input are meaningful in their
particular context. Structural analysis is further decomposed into two parts.
Lexical analysis deals with the basic symbols of the source program and is
described in terms of a finite-state automaton. Lexical analysis reads the terminal
symbols of the source program and produces a sequence of tokens. Parsing deals
with the static structure of the program and is described in terms of a pushdown
automaton. It determines whether a sequence of tokens forms a structurally
correct program. The program can be represented as an explicit parse tree or in a
linearized form called the connection sequence which is input to semantic
analysis.

There is little in the way of formal models for the entire synthesis
process, although algorithms for various subtasks are known. Synthesis consists
of two distinct subtasks: code generation and assembly. Code generation
transforms the structure tree into an equivalent target tree. Assembly resolves all
target addressing and converts the target machine instructions into an appropriate

output format, namely the target program.

Central to the issues of parsing is a grammar, which specifies the
structure of a language. For example, an if-else statement in C has the form:
if (expression) statement else statement

The statement is the concatenation of the keyword if, a left parenthesis, an

<",J'.‘!"I'-F‘ S

R ey ot ‘. '.f‘;._ -\'f'._._'. "».‘;\' -\- N-f\' '\- \'\“ .-(*{‘ X Y q(e A - - ~ . X i{&

4
expression, a right parenthesis, a statement, the keyword else, and another
statement. Using the variable expr to denote an expression, and the variable stmt¢
to denote a statement, the structuring rule can be expressed as

stmt — if (expr) stmt else stmt
in which the arrow can be read as "can have the form". Such a rule is called a
production. In a production, lexical elements such as identifiers, the keyword if,
and "(" are the terminal symbols. Variables such as expr and stmt represent

sequences of tokens and are called non-terminals.

Grammars can be placed in several classes, of which only context-free
is of interest here. A context-free grammar has four components:
(1) A setof terminal symbols.

(2) A set of non-terminals.

(3) A set of productions where each production consists of a non-terminal
called the lefi-side of the production, an arrow, and a sequence of to-
kens and/or non-terminals called the right-side of the production.

(4) A designation of one of the non-terminals as the start symbol.

We assume that the production listed first contains the start symbol and that
digits, special symbols such as "{", and boldface strings are terminals. For
notational convenience productions with the same non-terminal on the left can
have their right-sides grouped together with the alternative right-sides separated

by the symbol “‘I’” which can be read as ‘‘or.”’

Parsing methods can be classified according to the way the parse tree is
constructed. Top-down parsers build parse trees from the root (start symbol) to
the leaves (terminal symbols) while bottom-up parsers start from the leaves and
work to the root. In both cases, the input to the parser is scanned from left to
right, one token at a time. The two types of parsers are capable of recognizing

different classes of languages defined by properties of the grammar. The

e e N e N N o ' 0 N e

a_" . -
WAL IS

v

A0 e et y? 005 et S0% 0a< oV o< Set Sat Aet gy ¥ Ro¥ So 4

RO

Y

220 - P ot g Pl
G O o)

A B

N

*_S_S_ 8
":'-" '.'"".

(550 @
-

AN o)

-

3@

XN

P

n...-n -

_, r‘*'
RN oY R K

WAL S

'.-’i?.'-

v

aalas

@/ 77

e

Ol A

N
o
EaATR

K NI AR TN TN

720" 20 a8 470 N 40,07V 4 0.2 1B 0 A VRS b oo i, Sak* 'Y < a¥a-BiaaheRria Aiav

5
language recognized by a top-down parser can be specified by an LL grammar.

An LALR grammar can be used to specify a bottom-up parser.

Discussion can be limited to the LL(1) and the LALR(1) grammars
because parsers for their languages:
(1) Are deterministic and hence parse in linear time,
(2) Never accept a symbol that cannot continue a correct parse,
(3) Cover almost all programming language constructs,

(4) Can be analyzed by well-known tools, and
(5) Have well-known algorithms for error recovery.

Parsers implemented by hand, which work with LL(1) grammars, are usually
directly executable code. Generated parsers are usually table driven and are

specified with LL(1) grammars or the larger set, LALR(1) grammars.

1.2. Tools

A parser genezrator is the tool that takes a grammar as an input, and

prciuces a parser (see Figure 3).

gramymar
parser
generator
token connection
parser f——m0—
sequence sequence

erfor
mesgages

Figure 3. Parser generator

A SRR

‘l.ll"'.‘°°" 4
.‘{ "‘.",_ -“. {-.

@
QAR

-« L
o ’s-“ o

L Ry L TP
N N,

ol

EX)

el et vab tat

AT T

YU Vat Vah o) tagl

T IR TR -’-ny--v.-.-n-vn_--o~...-- L Y I R W L “w
A . -I-*--(.r"\r. ro it 4 " .r.-. 7 W -(1'\1 ™ .‘.0.\‘ e RN

. gav .
e N N L M N M W W W e V

R b AR B G0 0.0 0005 A ANLA N o4

6

Using a parser generator is preferred over "hand coding" because the

resulting parser is more reliable, maintainable and often faster. Further, it can be
produced with less effort. By reliable, I mean that the parser produces useful
results under the weakest possible assumptions about the quality of the input. A
reliable parser will accept all legal programs and reject any illegal ones. Building

such a parser "by hand" is tedious and error prone.

Even without error recovery, building and maintaining a parser by hand
is an error prone process. A hand written parser is usually written from a
grammar specification. The most common technique, recursive descent, requires
an LL grammar. Just determining that the grammar is LL is tedious. If the parser
does not work properly, it will need to be changed, but the grammar specification
may or may not be correct. The real definition of the language that the parser
accepts becomes embodied in the code of the parser routine. The correspondence
between the grammar and the parser is not guaranteed. On the other hand, a
generated parser is constructed directly from the grammar specification.
Assuming the tool works properly, the parser must perform according to the
grammar. Changes in parsing behavior are always a result of changing the
grammar. The tool ensures that the generated parser will always correspond

exactly to the grammar.

Almost by definition, error handling involves a mass of special cases
and exceptions to rules. Therefore, it is very difficult to attempt to handle all
errors with ad-hoc techniques. It is difficult to prove, or even convince someone,
that a hand written parser is correct and can deal robustly with illegal input. If the
source program contains structural errors, the parser must indicate the problem. It
is usually unacceptable for the parser to "give up" at the first error and abort the

compilation process. We desire parsers that will "recover” from an error by

~
L LA

n-—

.
-2

-,

Y ™,

o T \.’\l;-.,!r'r,'v"

. A

oz
€ e
)

] 1‘1‘.:';‘:"' ;l:‘d K ‘l.
A4

Nty Aty

o,

Py

l’l' Vl
r ‘2w ¥

L

o N CFFP LI

R

?‘l’p W, .‘ .l.o_l' - ‘.

7
altering the remaining input and continuing. This has to be carried out in a very
careful and systematic way to insure that the entire compiler remains in a
consistent state. Fortunately, there is a theoretic foundation that provides an error
recovery technique that is guaranteed to handle all syntactic errors. Automating

this method ensures that the error recovery will always work properly.

Parser generators gained popularity in the early 1970’s [Aho1986].
YACC [Johnson1979] for example has been used to help implement hundreds of
compilers. Initially, just being able to construct a parser from a grammar was
sufficient motivation to use a parser generator. As languages become more
powerful and complex, we need to place more emphasis on parsing speed and
automatic error recovery. Each of the parser of parser generators in the following
list have different strengths and weaknesses, but none of them have have all of the

desired attributes.

YACC is a parser generator well known in the UNIX community.
Many UNIX tools such as pic, make, config, awk and cc use YACC to construct
their parsers. YACC produces a medium speed, table driven parser (C code). For
most applications the parsing speed is not a major bottleneck in the overall
program. The space requirements of a YACC parser are very reasonable. YACC
produces a parser from an LALR(1) grammar. This is an advantage over parser
generators that only work from LL(1) grammars. It is an inconvenience that
YACC does not accept extended BNF notation (EBNF) [Waite1983]. YACC has
directives that can be used to specify precedence and associativity. The major
drawback of this tool is that there is no automatic error recovery. Unless the
compiler writer is willing to do extra work, the first syntax error will terminate

parsing.

A Sal LGRS b Al S 60 b) LSl b gk LA LA NLER Aa, v

e enepaene e e 0 o s
T A A A G P A A A D

P S X,

%
’§5

2,

f
g

R W e ey

e

“w

S XERs

£

X FE L,

B e T e Y

R A,

IS EEEEES

7.

The PGS [Dencker1985) parser generator also uses an LALR(1)
grammar to generate a table driven parser. Unfortunately, the parser runs
unacceptably slowly. PGS spends a lot of effort compacting the parse tables.
This combined with inflexibility of PASCAL (the implementation language of the
generated parser) results in extremely costly parser table access. The major
advantage of a PGS generated parser is that it is guaranteed to recover from
syntactic errors. PGS accepts an extended BNF notation, but has no directives for

precedence or associativity.

The SYNPUT generator [Dunn1981] produces parsing tables from an
LL(1) grammar. SYNPUT accepts extended BNF and has the same automatic
error recovery as PGS. The generated parser runs at about the same speed as a

YACC parser.

Performance 1is always an issue for production compilers.
Measurements show that parsing time often represents a significant percentage of
compilation time and furthermore that hand-written parsers run faster than parsers
generated from tools [Grayl985b]. This is unnecessary and these tools are
deficient. Production compilers often use directly-executable recursive descent
parsers. Many of the tool-generated parsers are table driven thus leading to

reduced speed.

If hand written parsers were always much faster than generated parsers,
there would be trouble justifying using the latter. Although none of the above
parser generators offers both speed and automatic error recovery (AER), as
compiler writers, we desire such a tool. The produced parser should be
reasonably space efficient. It is desirable for the tool to accept the LALR(1) class

of grammars.

PO R IO KR X URL®

N T =)

e

- oo o

e i T~

. T S TR

L AR

P

B A A Ty S N o L A AN A T 7 W S T AT T AT T e e A, L T e
- ! - L3 - Al - (] b » - - » 5 '

.....

1.3. A Directly Executable Parser with Error Recovery

Waite and Hall [Waite1985b] have devised a method of generating a
top-down parser directly from an LL(1) grammar. Their directly executable
parser runs even faster than a recursive descent parser because they have
eliminated unnecessary procedure call overhead; nevertheless, we still need

automatic error recovery.

This thesis describes the design and implementation of a tool that
generates a Directly Executable parser with Error Recovery (DEER). The error
recovery has a negligible effect on the parsing speed of syntactically correct
programs. When a syntactic error is present in the input program, the parser
invokes an error recovery automaton which deletes and/or gener:.tes tokens to get

the parse back on track. Normal parsing then continues.

1.4. Thesis Statement and Organization

This thesis is concerned with generating fast, error recovering parsers.
An earlier project [Gray1985b] investigated why tool generated compilers
[Kastens1982] ran so much slower than hand written ones and found that parsing
time accounted for the major difference. Not all generated parsers are slow
[Gray1985a). With the exception of this work, other generated parsers do not
provide both high speed and error recovery. 1 present the design and
implementation of a tool that produces fast, error correcting parsers. The

generated parser is efficient, user-friendly, and maintainable.

Chapter 2 explains the generation of directly executable parsers.
Chapter 3 shows how automatic error recovery has been incorporated into the fast
parser. Chapter 4 presents time and space measurements of the DEER, YACC

and PGS generated parsers. The last chapter discusses areas of further study.

-

1,0 %8 4

PR

(XANRKRRKA R

R LU R R R AR TR - Jal Vel Sl b Gl ah S L R A AN A

CHAPTER 2

DIRECTLY EXECUTABLE PARSER

This chapter explains the concepts of the Waite and Hall parser and the
refinements 1 have made to it. The conventional recursive descent parser is
explained first. Then I draw a parallel between the recursive descent parser and
SYNPUT tables. These tables can be interpreted or they can be transformed into
directly executable code.

2.1. Motivation

There are numerous cases where the efficiency of a tool is crucial to its
acceptance. The PGS tool has the error recovery feature that we desire, but is
often not used because of the slow running speed of the generated parser. As both
Waite [1985a] and Pennello [1986] hypothesized, high parsing speed can be
achieved when the parser is directly executable. Hall and Waite [Waite1985b]
performed an experiment comparing a YACC generated parser for Pascal to their
directly executable parser for the same language. As Figure 4 shows, at a cost of
twice the total space the speedup is almost a factor of ten. Although the
respective grammars are somewhat different, it is clear that direct execution

offers the opportunity to achieve large speed improvements.

x I

,

o O S T

.5

. my~—

® -

ol

»

acs o 8

g

..‘

P

~~
M) .l’

CL

2Ny

Le%,

o

11

parser time text data bss total space
YACC 631 664 3916 608 5188
Waite/Hall 65 9660 436 0 10096

Figure 4. Waite-Hall parser vs YACC

2.2. Recursive Descent Parsing

A recursive descent parser has a procedure for each left-hand non-
terminal of the grammar. Each procedure recognizes the respective right-hand
side. The technique requires an LL(1) grammar. Briefly, for LL(1) grammars, it
is always possible to determine which production will be required based only on
the current terminal symbol. A complete discussion of LL(1) grammars and
recursive descent parsing can be found in the literature [Waite1983, Aho1986].
The LL(1) condition can be verified by hand, or by using a tool such as SYNPUT.
Recursive descent parsing has been used for years in production compilers
[McClure1972]. It is the best general method of writing parsers by hand. Even
when coded in a high level language, the recursive descent parser is very

efficient.

Figure 5 gives a simple LL(1) grammar that will be used in examples

throughout this chapter.

simple

~id

array [simple] of type
int

char

num .. num

type

simple

Tl T

Figure 5. Sample grammar

Figure 6 gives some example sentences of the language specified by the sample

grammar.

aun

Ty A - TS N A A T P A ALY AL LA
N e S e N G L G

num .. num ,
int
array [int] of "id 4
char o)
U
Figure 6. Sample input sentences o

Aho, Sethi and Ullman [Ahol1986] give a recursive descent parser for this

grammar which is condensed in Figure 7. Match is the procedure that consumes .)
the expected token and gets the next token from the lexical analyzer. This is _‘
known as the lookahead (la) symbol (or token) because it has not yet been
accepted by the parser, but it is available for inspection. Parsing begins by setting ':'::
)
la to the first token of an input, and then calling the procedure corresponding to "E
%,
the start of the grammar (e.g. "type" in this grammar). Figure 8 traces the 1
recursive descent execution on the input sentence: array [int] of " id. \’
(3
~
]
"
s
¢
vt
hn
procedure match(t:token)
if 1a = t then la := nexterm(); else error(); :
o))
; procedure type .
; if la is in {int char num} then simple() o
elseif la = * then match("); match(id); s
elseif la = array then match(array); match([);)
simple(); match(]); match(of); type(); w
else error(); 'f
"
procedure simple Ny
if 1a = int then match(int); s
elseif la = char then match(char); R
elseif la = num then match(num); match(..); match(num); N
else error(); o
:h:.
Figure 7. Recursive descent parser)

LAY

DA b

D NN G G e o o R N S e o Lo T ey T P i e]

457 072647 08" At 2l e a8 alR Ha"0at 0t 0a et fa” At 00T Hu0 0a® 0aP Ga0 0ot PaU tnd 20 Gat Ba¥ gt a0 (28 a0 (at gut §at a0 a0 000 dat Bef dud Bub’ v §2% 008 ot hut Ga¥ gu? pot

- A B e

- -

(1)

2)
3
4

&)
(6

.

13
Procedure Code Lookahead token
array

type if la is in {int char num)

elseifla="

elseif la = array then match(array);
match [
match int
simple if la = int then match(int)
match]
match of
match "
type if 1a is in {int char num}

elseif la = * then match(");
match id
match EOF

Figure 8. Recursive descent trace

2.3. SYNPUT

SYNPUT is a tool that produces a top-down table driven (ie. not

directly executable) parser from an LL(1) grammar. The parsing tables are

divided into six parts.

A summary of the number of terminal symbols, director sets, actions,
and parsing rules.

A bit matrix representing the director sets (explained below).
The terminal symbols of the grammar with their assigned token codes.

The terminal symbols that have intrinsic attributes — such as
identifiers and numbers.

The non-terminals.
The parsing rules.

Given these tables, the interpreter part of the parser will recognize sentences of

the language. When the interpreter needs the next terminal symbol, it calls the

lexical analyzer which returns a token code. SYNPUT encodes the terminal

symbols of the sample grammar as given in Figure 9.

D e A L 2 R R T TS LR T2

¥ o o]

PN

i G AP

G A

Frrrzi-s. @

bt

¥ N
SN MG

'\\' \"V" \“’ \

id
array

of
int
char
num

(S
QO OO0~ HE W —~

Figure 9. Token codes for the terminal symbols

Briefly, the director sets are sets of terminal symbols that enable the
parser to determine quickly what action to take next. Figure 10 gives the director

sets for the grammar in both symbolic and integer form.

D1= {int char num] = {789}
D2= ("arrayintcharnum}= {13789}

Figure 10. Director sets

Notice in Figure 7 that the first line of procedure type is checking whether the
lookahead is a member of the director set D1. Furthermore, if the lookahead is
not a member of director set D2, then calling type will cause a call to the
procedure error. This is how these sets are used to direct parsing action. In
procedure simple, the first test can be considered a test in a director set with a
single element (ie. a test for symbol int). It is more efficient to avoid explicit

singleton director sets.

The SYNPUT produced parsing rules are given in Figure 11 (symbolic

codes have replaced integer codes to make the table easier to follow).

A portion of the interpreter for SYNPUT tables is given in Figure 12.
Parsing operation begins with the lookahead symbol, /g, initialized to the first

terminal of the program, and with the stack, Stk, containing a single element zero.

7 G o A A AR RO KA

7’

A

LN YR

CLCEEIY o

"4 %

A G L AR P L R A AL 2 Bt S e i

15
Rule Op S L/A
LO JE {" array int charnum} L1
L1 NC L14
L2 NR
L3 JO it L6
L4 RD int
L5 JP L13
L6 JO char L9
L7 RD char
LS8 P L13
L9 JO num L4
L1I0 RD num
L11 RE .
L12 RE num
L13 NR
L14 JO {int char num} L17
L15 NC L3
L16 JP L28
L7 JO -° L2i
L18 RD °
L19 RE id
L20 JpP L28
L21 JO amay L15
122 RD amay
L23 RE [
L24 NE {intchar num) L3
L25 RE]
26 RE of
L27 NE (" arrayint charnum} L14
L28 NR

Figure 11. SYNPUT produced parsing tables
The first table entry is a jump (JE) to the code that corresponds to the start symbol
of the grammar. Parsing is complete when the entire input is consumed and the
stack is empty. Every state transition requires a cycle through the loop. The
current parse state is maintained on the top of the stack. The PUSH macro pushes
a new state onto the top of the stack. The JMP macro changes the top of the stack
to the target, thus affecting a jump. In the interpreter, the three arrays Op, Dset

and Datum correspond to the columns of the table for opcodes, symbols or

R A e)

R aud et Y . R | ° B s e B ‘A @ y
VWOV RS L4t -G ANAE LAY NI o A o La0RY g A o ava AV Lat gt B/t o0 0 0 0t 006 2 800 a0 10 0°0 6 & 1500 n 4 0% 4. N NN

*

)
ISSSSE,

SV N IR

e
’
s

o

e

g]

LW,

I aT N s @ ot a0 00" AU atat Aa® £aR SpT AV Ma® (2t 4V gat GV bt g2V gav gav Qa¥ £20 §ab v §a0 §aU ot o ¥ dot 2 . XTI OT OO TORTOT ™ NN

16
director sets and labels (rules) respectively. The opcode definitions are given in
Figure 13. S refers to a set of terminal symbols (possibly a singleton set). Later,
it will be more convenient to express singleton sets by suffixing the opcode with
the letter *‘S”’. For example, ‘‘JO”’ is equivalent to *‘JOS’’. L refers to a rule
(also a state of the parser), and A always refers to an action to be performed upon
recognition of a grammar production. (There are no actions in the sample
grammar.) Each opcode requires specific operand types, so operand interpretation

is unambiguous.
Consider the trace given in Figure 14 for the parsing the following sentence:

Interpretation begins at rule 0 of Figure 11. The lookahead symbol has been

initialized to the first token, that is, la = 3. la is a member of D2 so goto L1.

do {
rule = Stk[Spl++;
switch (Op[rule]) { /* case labels */
RDS RD la=lexAttr(); break;
RE IF_NOT(Dset[rule],la) (void)parErr(ia,rule);
else la=lexAttr(); break;
AC action(Datumfrule]); break;
RA IF_NOT(Dset[rule},la) (void)parErr(la,rule);
else {action(Datum[rule]);la=lexAttr(); } break;
NC PUSH break;
JP JMP; break; /* set stack to Datum[rule] */
JI IF_IN(Dset[rule],la) JMP; break;
)
)
while(Sp>0);

Figure 12. Table interpreter

T
b o o s

o g I!-‘]'

Aol B .

5554

e gaae e e
'/.lv

o
Ny
'
3
N

!

-l

17

¢

AC A Perform semantic action A.]
AR S,A Perform action A and read a new symbol. g
EO S Error if la not in S. 24
JE S,L Iflain S jump to L, else error. s
JI SL IflainSjumpto L. e

JO SL IflanotinSjumptoL

JP L Unconditionally jump to L. :
NC L Call nonterminal L. It
NE S,L Iflain S call nonterminal L, else error. ot
NR Return o
RD S Read new symbol. ¥4

RE S If la in S read a new one, else error.
RA S,A Iflain S perform A and read, else error. ‘
o~
Figure 13. Definition of SYNPUT codes 3
'
o d
x

]
N]
!
A

(%

)
O

A ™ LS SR T B el

5

R R LT P LI YL, o T { Nl - v YT v o W oL R e W W ' Wl
h.‘{' AAA ‘. Q‘C' O AN A NI A A .' > .- u"’x.. Gl .o -~ '.i. -no O ?‘a--. ,N‘.\n‘!h. alaN

Y VT W UW AW VA ST UVOVL AL T \.,‘!Q g

18
rule Op[rule] Dset[rule] Datum[rule] Stack lookahead
L S L/A

array
LO JE {D2} L1 01
L1 NC L14 02

push(14)
L14 JO {D1} L17 0215
L17 JOS B L21 0218
L21 JOS array L15 0222
L22 RDS array 0223

[
L23 RES [0224

int
L24 NE {D1} L3 0225

push
L3 JOS int L6 02254
L4 RDS int 02255

]
LS JP L13 02256
L13 NR 022514
L25 RES] 0226

of
L26 RES of 0227
L27 NE {D2} L14 0228

push(14)
Li4 JO (D1} L17 022815
L17 JOS B L21 022818
L18 RDS - 022819

id
L19 RES id 022820

EOF
L20 JP L28 022821
L28 NR 022829
L28 NR 0229
L2 NR 03

Figure 14. Interpretive parser trace of array [int] of “id
NN Lt T, L T LR R T T N A R O A O P A A N I R NG o R

RO O

" . “h me . kA ah i’ atA S el ads A ke s
ny L A p* LR WAL R AN LA At L ati aia o~ Pt AV A AN ath AV el a5e s 04

19

Now make a subroutine call (L.14) to process the non-terminal simple. la is not in
D1 so goto L17. la is not equal to 1 so goto L21. /a is equal to 3 so continue at
L22. Read the next symbol, 4. la is 4 so read next symbol: la = 7. The process is

continued until the stack is empty.

2.4. Direct Execution

SYNPUT has performed the work of producing a set of parsing tables
that tell how to recognize sentences of a language. These tables can be translated
into directly executable code. Figure 15 shows the steps to generate a DEER
parser from an LL(1) grammar. A set of programs transform the SYNPUT tables
into files of C code. Direc.h and Direc.c encode the director sets. There are three
files for the arrays Op, Dset and Datum. Finally the directly executable code is in
the file tbl.i. There are also a set of files that remain constant for all grammars.
These, along with the six generated C files, can be compiled together yielding a

complete parser.

The structure of the directly executable parser shown in Figure 16 is

similar to a an assembly language version of a recursive descent parser. A call is

congtant
framgwork
LL(1) SYNPUT tables {transformation| files C.
grammar programs compiler
DEER
parser

Figure 15. Steps to build a directly executable parser

o W W M W W

L Y " r LR g o
A R SO T R O WA SRR TR GRS

N

.

T

EAAE WP A AN

s

OO LSSy

SRR

Yo

SN AT e T NSRS

vrrr';‘r

-
“ s P v

Wi ¥ W W W\
TI\J\A\, A ‘\P -

20

implemented as the sequence PU(); goto L; and a return is goto pppop. Notice

that the case labels are compact. This yields an improvement in execution speed

of up to 25%.

goto LO;

pppop:
case O:

case 1:

case 3:

case 4:

LO:
L1:
L2:
L3:
L4:
L5:
L25:
L26:

L27:

1.28:

switch (--*DEPSp) {(
break;

/* Code included from tbl.i */
IF_NOT(D2,la) la=parErr(la,L.0);
goto L1;

PU(1); goto L14;

goto pppop;

if (la !=int) goto L6;
la = nexterm();

goto L13;

if (la !'=1]) la=parErr(la,L25);

la = nexterm();

if (la != of) la=parErr(la,L.26);

la = nexterm();

IF_NOT(D2,la) la=parErr(la,L27);
PU(4); goto L14;

goto pppop;

Figure 16. Directly Executable Parser

At first glance, the directly executable parser appears to have a structure similar to

the interpretive parser. However, the interpretive parser requires a loop iteration

for every state change: the directly executable parser makes transitions with goto

statements. A switch statement is required for only a fraction of the cases. There

are roughly four times as many instructions required for a state transition for the

interpretive case. The trace in Figure 17 illustrates the parsing for the sentence

array [int] of "id.

Laf "y Mg K L g L g™t e W 7,
5 ..ln‘ WA TTNY A vﬁ.‘.\.. .~A AN

b

oy o
|‘

B R,

2 ¥ ERSSARA S ¥ TG

X B X

\;\'\f\';l; Ny A
2o 1l ol]

e eui ey Al

DAL T

-y

-
-

. 4

R

-

-

SO

.

L A A R R T e O Y L R R oy P UR, P W GO IR PR PR T RV R G v v e VW OO LV LS

RS

Qi

&
21]
1 use a two step translation process to convert SYNPUT tables into C "\"‘

>
Ly £y

code. The SYNPUT tables distinguish between multiple element sets and

singleton sets by using a star (*). It is more efficient to test for a particular
symbol than to test whether a set contains the symbol. As shown in the example
in Figure 18, in step 1, any instruction that is dealing with a single terminal
symbol (starred integers in Figure 11), is translated into a new instruction, whose

name has an S suffix. Figure 19 gives a sample of the transform pattern.

PU is a macro that pushes its argument onto the parser stack if there is
room. This is part of the mechanism used to simulate procedure calls. For
example, NC (the other procedure call instructions are NE and NES) is a call to a

non-terminal production of the grammar. First NC remembers the location to

NS

which control should return (PU). A goto is executed and the return position is

ALY

marked with a case label. For efficiency, the case labels should be compact, thus

L

current is an integer from 1 to the number of calls in the parse tables. L is a label

e

attached to the code for the entry corresponaing to the jump target; IF_IN and

IF _NOT are macros that test if la is a member (not a member) of director set S.

A portion of Figure 7 has been transformed into directly executable

code in Figure 20.

MR CIRC IR L LN N A Y et L T T A T Yt e ST
Lt e -':‘.\‘ AT ANA AL PRI, VO 0 08 AR Py

Vel Yk el Wa e b Vo A aa . a A . -

Code Lexical
array
IF_NOT(D2,]a) la=parErr(la,L0); goto L1;
PU(1); goto L14;
push(1) 01
[F_NOT(D1,la) goto L17;
if (la !=") goto L21;
if (la != array) goto L15;
la = nexterm();
[
if (la !=[) la=parErr(la,L23); la = nexterm();
int
IF_NOT(D1,la) la=parErr(la,L24); PU(3); goto L3;
push(3)013
if (la !=int) goto L6;
la = nexterm();

goto L13;
£0tO pppop;
pppop: 013

if (la !=]) la=parErr(la,L25); la = nexterm();
of
if (la != of) la=parErr(la,L.26); la = nexterm();

~

IF_NOT(D2,la) la=parErr(la,1.27); PU(4); goto L14;

push(4)014
IF_NOT(D1,la) goto L17;
if (la !=") goto L21;
la = nexterm();
if (la !=id) la=parErr(1a,l.19); la = nexterm();
goto L.28;

£0oto pppop;
pppop: 014

goto pppop;
pppop: 0 1

goto pppop;

pppop: 0
Figure 17. DEER parser trace of array [int] of "id

D . . N . 5
\ ~ - A L WA W WA P P W BT W W W W VW T P P N
RS A A A L 0v. W i« o 0. T ! \. : 'N b NN AOANIIY,

R O R R O T D R R e R S T L o U3y L T I L e L T T T DY Y ST ST T Y YO Y R R T X PO R TG U oo
U

3
\ X
! 23 %
: <
K JO 7*,6 >
‘ step 1 A
. JOS 7.6 ;
; step 2 =
if(la !=7) goto L6 R
\
Figure 18. Translation example -
4 “~
. RD la = nexterm(); N,
AC A action(A);)
) NC L PU(current); goto L; case current: ;
' NR goto pppop; A
A JP L gotoL; vt
: I S,L IF_INGS, la) goto L; 4
X JO SL IF_NOTS,la)goto L; !
K EO S IF_NOT(S, la) la=parErr(la,current); '
) JIS SL if(la==S)gotoL; 5
JOS SL if(a!=S)gotoL; 3
NE S,L IF_NOT(S,la) la=parErr(la,L); h
PU(current); goto L; case current: Y
N
Figure 19. SYNPUT codes to C code o
"‘
Rue Op S L/A Directly Executable Code N
) ..i
LO JE D2 Ll IF_NOT(D2,1a) la=parErr(1a,L0); goto L1; ‘.f
LI NC L14 PUQ1); goto L14; case 1: M
L2 NR goto pppop; s
L3 JO imt L6 if(la!=int) goto L6;)
L4 RD int la = nexterm() ; 2
; L5 P L13 goto L13; by
L25 RE] if(la !'= J) la=parErr(la,L25); la = nexterm() ; N
L26 RE of if(a != of) la=parErr(1a,L26); la = nexterm() ; -
.‘ 3
Figure 20. Directly Executable Code :?._
\ The most straight-forward data structure used to represent director sets .‘:.
is a two dimensional array, indexed by director set number and token code. For : E
our grammar, it might look like Figure 21. '
f. 3
)
[

(g et AT 2w P aly Th T A e AT AT T A AT AT AT AT A A A A o~y Y e e e e e .
e v A d ¥ MY Ve, 'v\\ A ‘!‘l () \" -‘A..-. A . Vf'\l V'{f"n’f‘f' N " -)‘.,._-"q

L) »

W LATURTUR U

.y

VAl Vab gl L a0 s 20 0 0 a0 at Bt 2D 8 e 2% ath et ate’ L8R 2t et B ¥ o0 O U MR N R (T NYR N
24
token codes
set# 1 2 3 4 5 6 7 8 9 10
D1 O 0 0 o0 o0 0 1 1 1 0
D2 1 0 1 0 O 0 1 1 1 0

Figure 21. Naive director set encoding

Since most machines are byte or word addressable, we waste lots of space when
representing director sets. Packing the bits has the disadvantage of requiring a
much longer access time. A set membership test would require first a two
dimensional array access, and then a bit test, depending on the value of the

terminal symbol.

The key insight for better access efficiency is that for each rule the
director set S is a constant for a particular grammar and thus fixed at generation
time; only /a varies with different input programs. Access will be faster if the
director sets are stored vertically, with each byte holding bits from 8 sets and
successive bits of a set occupying successive bytes. When there are more than 8
sets, another block of bytes will represent the next 8 sets. The length of the
blocks matches the number of terminal symbols (ie. 11 for the sample grammar).

Figure 22 shows that D1 contains a bit representing symbols 7, 8 and 9 which

correspond to the director set D1 = {int char num}.

.

-~
Y -

o

ey

WS L LW

2 l.-,: u .k'

RN 4

35585

J-

»

AN g ARG

E AL

AW N

. -'_ -‘A'. ?- ','-',‘ - ”

-

L AL

%Y XY ViWw

AL A

VI Yy
e ‘a s

SR T U AT U W AR L WU WK A R WK SE AR IO A R R P00 a® ot pat Jal¥ o Pab §.0 Sat a8 §o¥ @0 500 80 0,0 D0 00 g 00t 06 0 0oh 8 Rl R Pt §.8" ()

. T
e
25 v
sym D7 D6 D5 D4 D3 D2 D1 DO 4
0 »
1 1 ~
2)
3 1 i
W,
4 i
5),
6 2
7 1 ‘s'.:;
8]
9 1)
10 n
Figure 22. Director set access and storage :.u{
»
0
t
The macros (Figure 23) generate an index into a one dimensional array, and ky
generate the right bit mask for the test.)
.t
0
#define WD 8 =
fidefine NS 11 /* ten symbols plus the zeroth entry */
#define IF_NOT(set,sym) if(!(Dir[sym+(set/ WD)*NS]&(1<<(set% WD)))) i
#idefine IF_IN(set,sym) if((Dir[sym+(set/WD)*NS]&(1<<(set%WD)))) S:::
char Dir{] = {)
0x00, /* sym=0 sets 7-0 */ .
0x04, /* sym=1 sets 7-0 */ ;,'
0x00, /* sym=2 sets 7-0 */ R
0x04, /* sym=3 sets 7-0 */ 2
0x00, /* sym=4 sets 7-0 */ ot
0x00, /* sym=5 sets 7-0 */ ; ;
0x00, /* sym=6 sets 7-0 */ o
0x06, /* sym=7 sets 7-0 */ ?‘{'j
0x06, /* sym=8§ sets 7-0 */ «'&1
0x06, /* sym=9 sets 7-0 */ oy
0x00}; /* sym=10 sets 7-0 */ :‘.
Figure 23. Director set storage -
I8
ik
l} \3
A
e

CHAPTER 3

SYNTACTIC ERROR HANDLING

The quality of its syntactic error messages is an indication of the user
friendliness of a compiler. In the best case, the user is immediately led to all
syntactic errors of his program. In the worst case, if error recovery operates
incorrectly, the compiler may crash, leaving the user helpless. Section 3.1 gives a
brief overview of syntactic error recovery techniques. Section 3.2 presents the
theory behind the error recovery method selected. Implementation details are

presented in Section 3.3.

3.1. Overview

As a parser operates, it consumes input, token by token. The consumed
input, also called accepted input, drives the parser into a particular state.
Deterministic (non-backtracking) parsers never accept a token that cannot legally
continue what has already been accepted. This is one of the principle merits of
LL and LALR parsing techniques — they are guaranteed to detect errant tokens

as soon as they are encountered.

The user should receive as much information as possible from each
compilation attempt. It is unacceptable just to detect the first error and quit. The

parser should repair errors and continue parsing. Finally, it should deliver a valid

A% 31150, 5.t N G VRO S AV AT N I A ! A WA O A T A R A AN N N

TR e ™

SRR
’l. s

LA

4-

N N R AT Ry B 226 @b 20" 6V d 800 e 8 Va0 R Eh e 1Y 0 aha it el et At Pt R PR hed 5k 2R S E

27
parse tree or connection sequence to the rest of the compiler. If the parser tries to
recover but delivers a faulty parse tree, the remaining phases of the compiler

could crash and leave the user helpless.

Gries [1976] gives an excellent annotated bibliography for error
handling. Also, Homing [1976] presents an overview of various techniques of
error handling. There are many strategies a parser can employ for error recovery:

panic mode, phrase level, error productions, global, and automatic.

One of the simplest language independent recovery techniques is the
panic mode. When an error is detected the input is skipped until one of a
predefined set of "special” symbols such as begin or ";" is encountered. The
parsing stack is popped until the special symbol can be accepted. Unfortunately,
this method has many shortcomings. It frequently results in deleting large
portions of the source text. In addition, semantic information depending on the

erased part of the stack becomes inconsistent. Finally, the set of special symbols

must be determined by hand.

On detection of an error, phrase-level recovery makes a backward move
in the parse stack and a forward move in the remaining input. This isolates a
phrase which is likely to contain the error. Then a weighted minimum distance

correction is carried out at the phrase level.

Joy, Graham and Haley [Graham1982b] use error productions for their
production Pascal compiler. First the compiler writer needs to predict the most
likely kinds of errors expected. Then error productions must be written by hand.
It is impossible to foresee all error conditions. In practice, the parser must be
exercised to see how well the error recovery works. Further tuning is likely to be
needed. There is another shortcoming of this method: the added error productions

could make the grammar ambiguous.

“N A" ™

PN,

O O o e b A G D e

-

-

S

LY

3P

v

2 -
o

PG SR

¥ g = L 2 3 N F
et et Al PN

.-
[y

P - e 'lﬁ"-é“l"

B B e

AL WU WU W WU WL W W

> fat

v faf at af €at Fa® taV¥ $2% da? S Ba® $a¥ §3° Va* 0n” 02" 02V 60" 2% .U dat B0 0ut Q¢ §o0 B0 @ ¢ B8 420 P8 0P BB St 28 S 9.0 R Rat’ i Y

28

Global error recovery attempts to find the smallest set of changes that

will make a given program syntactically correct. It is impractical from the
perspective of efficiency due to the exponential number of corrections that must
be considered. The smallest set of changes if there are more than two errors is to
enclose the error portion with comment brackets. This is usually not a desirable

recovery.

Rdhrich [1980] has implemented automatic construction of error
handling parsers for LALR(1) grammars, and Fischer [1980] has done it for
LL(1) grammars. The technique is based on a sound theoretic foundation. The
resulting parsers are capable of correcting all syntax error by insertion and/or
deletion of tokens to the right of the error location. Therefore, no backtracking is
needed, and the output of the parser always corresponds to a syntactically valid
program. This contributes significantly to the reliability and robustness of a
compiler. The speed of parsing correct parts of a program is not affected by the

presence of the error handling capability.

Réhrich’s technique of automatic error recovery was chosen for
incorporation in the directly executable parser because it automatically derives
the error recovery directly from the grammar. Many other techniques require the

manual specification of error recovery.

3.2. Automatic Error Recovery

A parser for language L will accept input strings (i.e. programs) in L.
Let T be the set of terminal symbols of the language L ; then T* —L is the set of
all erroneous programs. Let w¢y be an erroneous program, where o is an initial
string that is syntactically correct and has been accepted by the parser and symbol
t cannot be accepted by the parser. The rest of the program is the string . We

say that ¢ is a parser-defined error.

BN S04V 40070070, 702908,

| ol o 4
R e~

.’-

Pl

Lt o o s
- -

“a W
24 by

!;.‘;—(.. S

2
Ko T

e

e

L A
b g

~
~
e P I A T I e P DT T L A iy
A A X & A N A o ! L e I Xall 35 A - W9 . - - D, 2 e M L L) -

RAASASCAC

8.5,

" v,

29

If wtxe(T*-L) is an erroneous program with parser-defined error ¢,
then to effect recovery the parser must alter either ® or ¢ such that rxeL or
wt ¢’e L. Alteration of w is undesirable since it may involve undoing the effects
of previous actions. It is too expensive to retain information in case backtracking

is needed. Thus, we consider the alteration of only ¢ and ¥.

The basic idea is as follows. A fixed terminal symbol f(g) is
associated with each state ¢ of the parser. When an error is detected, the parse
stack is copied. Then a "continuation parse” is carried out using the copied stack
and f (qi) as input at each state ¢;. In addition the set of allowable terminals
(Director set) of each state ¢; is added to the anchor set which is the set of all
terminals that could be accepted during this continuation parse. The function f is
chosen such that this process would terminate the parse rapidly, driving the parser
through states q1,...,qn. Next zero or more of the actual input symbols are
discarded until an input symbol ¢” is found which is in the anchor set. The state
for which ¢” is acceptable is ¢i. Then, the error is corrected by inserting
f (q1)...f (gi-1) into the input stream to the left of +”” while adjusting the original

stack. Finally, normal parsing is resumed.

More formally, the steps are:

N O A e e e i

s

5

A L
R
Xl Pt

s

PEEL AW
'."'.‘\'ﬂ_\"\

® ,r
-

T A T R A O Y O R R N O I Y T TR UN O R Satabatebiat ol tot Ul tak it 4 LYYV e i CETIT T
»

«

8 o
) [
\ 30 A
' 1
. e . . . U
i Associating: Associate a terminal symbol f (¢) with each parse state g at
generation time.
; Detecting: Detect the unacceptable token ¢. i3
N Anchors: Determine a continuation, |, such that ® y €L. In other ,
by words, find a string that legally completes the accepted input iy
ot . Construct a set of anchors D = {deT | v is a head of p ¢
't and o v d is a head of some string in L }. '
Discarding Discard from the input the shortest string Ne T* such that £ ,
& I ()
b =W, t"%eD. by!
; Generating: Generate the shortest string 6 €T* such that wot” is a A
r head of some string in L. Note, G is one particular v of step N
s 3 b
2 . it
Resuming Resume the normal parse with input “p’. ‘
A '
;‘ The following two examples illustrate error recovery for the cases of |
[) (]
. only token deletion and only token generation. The other possible case is token
P deletion and generation.
&) g
> \
W N
\
N
X
D
)]
X
;l B
N
4 ‘ t L
N Q
‘w
N X
€
L)
‘ \
)
‘ +
.l?‘d. O R A e e Tt I (oG 7 NN ¥ e e R R b R N SR

- . P
I AN \,l.'l. %

31

State: @ = array [t=[x = int] of char
The continuationis u = int] of int.

The anchor set D is built by taking each possible head (v),
of u and finding each symbol 4 that can follow it.

v=0 D = { int char num}.
=int D =D (]l
=int] D =D y(of}.
v=int]of D =D \y {intchar num " array}.

Find the shortest string 1, scan) looking for the
first symbol that matches some t“e D . In this case:

t” =int which gives
p =]of char for which
n=1[satisfies
ty = nt"Y

Let ¢ be one particular v such that wvz” is the head of some string in L.
In this example, there are no generated token because ¢ = &.

Figure 24. Discarding tokens for: array [[int] of char

w=array ¢ =int x = jof char u= [int]of int.
v=0 D=1{[)}).

V= D =D y (int char num }

v= [int D=D (1}

v= [int] D =D ylof}.

v= [int]Jof D =D y (int char num " array}

4

t”" =] p’ = of char n=9J o=]

Figure 25. Generating tokens for array int] of char

. B T f o Sy Ty W Y
R T R S I S Tt A AN R A A AR S R A R s

o W

SR,

P
-3 Wi e - - A

-'4'.‘,' e ’.'t}"' v

EA

e

[
N

- -

o

- o

PN XA

P

-

L o

¥ o
8%, 4% 0% By

2

1y 6% 87 H4g Bl

o, '

N G e AN AT I A A s

32

3.3. Implementation

This section first describes the straight-forward task of implementing
error recovery in a table driven parser. Next we address the problems
encountered in incorporating error recovery in a directly executable parser and
describe their solutions which form the contributions of this work. The Appendix
contains the source code for both types of parsers. Between the two parsers there
are many routines that are identical and a number that are similar. The C
preprocessor’s conditional directives handle the few differences in the latter case.
The Makefile can be directed to produce either a table driven parser ("make itr")
or a directly executable parser (“make dep"). When a routine name is mentioned,

it can be found in a C file of the same name in the Appendix.

Chapter 2 explained the workings of the table driven parser on correct
input programs. This section explains parser behavior on incorrect programs.
Figure 26 is a block diagram showing the interactions of the various parts of the
table-driven parser during error recovery. The labels on the arcs are used in the

text to refer to the corresponding invocations during processing.

2 advToAnch

Figure 26. Error Recovery in a Table Driven Parser

During normal operation, the parser requests tokens from lexAttr. When an error

St % e X X

e

-

0...

-
w

L)
AT

al

T T N R T M W XN W M R O O N R TR TATN I RR V. W “3%% 3% e 2% Wi gt AR Sal Sl b QL SR AR A e S Al i 8 b tat At § ‘.l

33

W W e

is detected, yyparse calls parErr (1) which conducts the entire error recovery. By .

the time parErr returns, the error has been corrected and yyparse continues

l"

normally with the next token.

In handling error correction, parErr calcvlates the anchor set (D) using
the technique described in the previous section and calls advToAnch and

advparse to delete and insert the appropriate strings. After computing D, parErr

Lt gt

calls advToAnch (2) which discards tokens from the input by calling lexAttr (3)

-

until an input token (¢ ") is found which is in D . Finally parErr calls advparse (4)

to continue the parse generating tokens until reaching a state in which ¢” can be
p g g g

e S

accepted. For this last step, advparse uses the actual parse stack and modifies the

parser state. When advparse reaches a state where t” is acceptable, error

- -

»

recovery is complete, parErr returns and normal parsing continues. Both yyparse
; and advparse are automata that share the same state, but differ only in their input
(actual input for yyparse, generated input for advparse). For either automaton,
parsing and semantic actions will be identical for identical input. The source

code with annotations is given in the Appendix.

Whereas the state in the table driven parser is entirely contained in the

T T S

» stack, in a DEER parser the state is represented by both the program counter and

LA

4 -

the stack. If error recovery can change the parse state, then this change needs to
be reflected “.«ck in the directly executable parser. This could be accomplished

by parErr "jumping" to the appropriate place in the parser which would be

Ty e Pl Ty Ty e Bl

difficult and machine dependent. Instead, the approach taken is to have error

recovery drive the directly executable parser by manipulating the tokens it

receives. Normally, the scanner gives tokens directly to the parser through calls

ay 4, K K Ay 0yt T

h to lexA1tr. However, under error recovery, the parser may get generated tokens

(te. from the string ¢ if it is non-empty). Control over this is exercised by

ey 9N
f

P R

[YA

r]

) .- e R m -t e e mtat e mm e M A"~ " Nt mT - -)
- .- m - p st et e m-mTmctac- .- BRI R . el) - LR IR I Tt - AT T TS TN e T *As WU I R A AL
R T R N AR GaS \,\.- L ...~ \-.,-\ VR .""._ \\- ARG TR A \ g R -‘ R -t‘ W

a

P Al e

-

oy

|
34 "
,:‘
interposing a routine between the parser and lexAttr, which returns either input ",
0

tokens (from lexAttr) or generated tokens (from advparse) depending on the error '
L
correcting state of the system.
of",

&
There are only a few differences between the error recovery routines of ' 4

the DEER parser and the table driven parser. >
1
nexterm() Obtains a token from lexArtr or advparse depending on the A
parser state. o
parErr(la,rule) has the additional task of building a call stack in a form that is Y
1

expected by error recovery. This requires a mapping between
compact case labels and rules (states).

advparse() The directly executable version performs no actions. Instead 3‘,
the actions are performed in the actual parser as advparse
provides generated tokens.

Figure 27 shows the control flow of the DEER parser. A dashed arrow represents C
o
a function call, and a solid arrow represents a token returned by a function. The Ky
Ry
parser operates in either normal mode or error recovering mode. This state is A

indicated by the global boolean variable [ErrRecovering] (set by parErr, cleared .!
.

2b
nexterm [7] advparse X

v o

F
lexAttr o

A

{ %
advToAnch :‘
] i

: 2

LY

parErr N

h
Figure 27. Logical structure of the error recovering parser N
i

i
- e r Tt U n " m e s A RA e g n . L e e O . o
‘l".ln ‘F’". ‘“" N 'F i > J\-"\" S ‘A',' sf- 'f\."-"" o \ '-\, __J' ",‘\ -s.'_‘-' Y \'_"\‘ ., \. . \'.\'. \." "'\.'r‘ 08

". '.l"“ ."".‘ C\

35
by advparse, and examined by nexterm). During normal parsing, yyparse
requests a token from nexterm (1). nexterm sees that [ErrRecovering] is false so
it returns the value obtained from lexAwr (2a,3a,4). The cost of testing
[ErrRecovering] which should be insignificant compared to the cost of obtaining a
token from the lexical analyzer, is the only extra cost when parsing a correct

program.

The following conditions are required for correct behavior. For every
call to parErr that occurs, there must be at least one call to advparse, the first call
is made by parErr itself, while possible additional calls will be made by nexterm

(when ErrRecovering = true).

The last call to advparse(from parErr or nexterm) must never generate
a synthe+': token but must return ¢”. This is the exact condition under which
ErrRecovering gets reset to false. advparse will be called exactly length(c) + 1
times. Furthermore, if 6=, then N#d. (Note that the first and last call of
advparse could be the same call). There are two cases for the first call to
advparse from parErr. 1) The token 1" matches what advparse was expecting so
ErrRecovering is reset to false and ¢ is returned. This happens when tokens are
only discarded from input. 2) ¢” does not match what advparse was expecting <o

a token must be generated.

The token returned by parErr must be one such that the condition
which caused the call to parErr is corrected - for example
if(1a!=5) la=parErr(...) or
IF_IN(2,la) la=parErr(...)
parErr must return a token /a such that the condition is false; that is, parErr

returns 5 or something in director set 2 respectively.

fv""'f'.r - T AT AT A TAT A A" ~ " AN }wvf\;’-\b'.{\".(:.)'\"‘. -,‘-'"-..'0"-."1.‘\._:--_‘:;‘i,:-,:\.".f;.,'.-..'-

N

N T

N

e e BF

:-'.‘- -.‘-‘ -

3

.
“a

R RN R T R P B R R Y Y R N L R L R R S e o T T T T DV Y S Y Y 7 2)

36

Actions will occur at the correct place because only the parser can

invoke actions.

'_"'J‘ “r e -_.';,- —’-‘:.;J. -_'l{'-.‘.’.:-\"-.'.-‘;‘- ".-'_"..-" . -‘,..:‘. «'\--. "o .--'-l\'_n _- “.\'_n ., -'. L) q-. -{ J' r.) ." ‘J' L]) -'. " 1.. “. - ".\

T 7 et e O

-

R N

o

L L L Pt] -

PR AR IR SN

CHAPTER 4

PERFORMANCE

The time and space requirements of a parser can vary widely.
Seemingly small details can make huge differences. In this chapter, I bring out
some of the performance issues and then compare DEER, SYNPUT and YACC

generated parsers recognizing PASCAL.

4.1. Performance Details

Conventional wisdom for software tuning is to build a system, measure
it, and then work on the areas which can yield the largest payoffs. I have used
this approach. The design and implementation of DEER has been heavily biased
toward fast parsing. Often, clever data structures reduce both time and space
requirements; however, when there has been a conflict, I have chosen to trade off

some extra space for higher speed.

I will first discuss instruction space efficiency. Figure 28 gives the
static frequency distribution of code to parse PASCAL. There are total of 730

such instructions.

"

-

-~ o - N T Il O W - WSSt N 'n’"— - -.‘.".. -..--I.'v-'! -\-'-.-\q.-w - [4 . .« -"_' %
y _.‘.“. '. oty 'h'\-\-).'\-'- '\ v o \\.‘\\ e y ._ Y -\. PN x\. _ NSNS A

_, “
@ % ot 'L}.»_g{x.'

e 2N S

L
>4 t‘ Iy

@

cSoh

"y, E ,{.
O LZALES

A

¥

PA R
Ay

X
R P
WA NA A W

174 la = nexterm();
108 IF_NOT() la=parErr();
92 if(!=)gotoL;
88 if (!=) la=parErr();
85 gotoL;
82 PU(); gotoL
36 goto pppop;

Figure 28. Frequency distribution of code

In terms of instruction space efficiency, the macro IF_NOT occurs very
frequently and should therefore be as compact as possible. One of the original
implementations expanded this macro into about 5 machine instructions. The
current version, (Figure 22), expands the test into one instruction. This saves
about 1000 bytes for the pascal language (2 bytes per instruction * 5 instructions

per test * 108 tests).

The director set representation is crucial to data space efficiency. There
are roughly 64 director sets and 64 symbols for the PASCAL grammar. The
naive implementation would require about 4096 bytes. Bit packing reduces this

to 512 bytes.

Time efficiency is facilitated by the vertical director set storage
technique. The macro IF_NOT(la,2) checks membership of the lookahead ir
director set 2. It is expanded as

if(! (Dir{la +2/8 * 11] & (1<< 2%8)))
The single 68020 instruction required to carry out this test is:

btst #2,a5@(0,d7:w)
The lookahead is in register d7, and the base of the director sets is in register a$.
The WIDTH of a byte is 8 and there are 11 terminal symbols (The extra is the

zeroth array entry). Various less optimal implementations require a runtime

g : Ca e AR e My
AN e f.".- PN

o e

?x’v:-f.'”"

Bt

S

«

XLELE

Pa s
-‘...

- ?‘)‘-‘;‘#\‘;')" "' " » "'.

-,

rﬂr{ «, --.

39
computation of the array index and the bit offset before the test can be made.
This triples the time required. On a 68020, byte tests are significantly cheaper
than long tests. Also, placing the array base in a register saves a load instruction
for every director set test. Taken together, these details represent more than an

order of magnitude speed improvement for director set testing.

The static frequency distribution of code gives us no clue as to how
often these statements are executed. It turns out that director set membership is
heavily used. For the input program described in the next section, the IF_NOT

macro is used 37,267 times and the PU macro is used 19,590 times.

A naive representation of Op, Dset, and Datum would use integer arrays
requiring a total of 8760 bytes (730 rules * 3 arrays * 4 bytes per integer). There
are only 24 different kinds of Operations (Figure 12 gives a partial list);
therefore, a byte is sufficient to represent them. Symbols and director sets could
exceed 255 and rule numbers certainly do (730 rules for pascal) so a short integer
is used. More than 4000 bytes are saved by this representation (730 + 1460 +
1460).

There are a number of other examples where careful tuning can yield
substantial time and efficiency payoffs. These include choosing registers for
heavily used objects, such as the lookahead symbol. The stack pointer is also

places in a register.

4.2. Comparison

This section compares the time and space requirements of the parsers.
All measurements were carried out on a SUN 3/75 running SUN UNIX 3.2. The

parsers, which are written in C, were compiled with the optimize flag (-O). The

call graph execution profiler gprof [Graham1982a] and rime provided the speed

by
.
| d

o

i 4 o iy r
-

R R TR R L R R R T TR PR R T R R P K T AN AN R R M AR AN RN T A TN AR IR P Ay PH VN RS AW SN " Wp gia-Bta duagva Aty S¥ gt -aty-ghy Sk iy gl

40
measurements. The input used was the distributed SYNPUT pascal program. X

The file which is 105,813 bytes long, consists of 16,170 tokens. The breakdown

)
hY
of this input program is given in Figure 29. ‘f
]
5638 Name h
1869
) 965 = ';
834 &
740) (i
400-523 Int:". N
200-368 END BEGIN String THEN IF] [= .
70-182 + NIL DO <> ELSE VAR v
40-61 - PROCEDURE WITH WHILE '
) ; —]
Figure 29. Lexical classification of input Y
)
The size command provided the space information for fext, (the executable code), $
data, (the initialized data), and bss (the uninitialized data, zero fill on demand). X
Both SYNPUT and DEER parsers have automatic error recovery; the y
YACC parser has no error recovery. Figure 30 compares overall time and space :‘
requirements of the parsers for the input. (The link editor rounds up sizes to the)
next 2k byte boundary). y
S %
. pace
Parser Time text data bss total 3
DEER 2.0 40960 | 24576 | 6148 | 71684 $
SYNPUT | 3.9 32768 | 24576 | 5968 | 63312]
YACC 3.2 24576 | 24576 | 5884 | 55036 i
Figure 30. Time and space requirements ‘ "
)
In Figure 31, the gprof tool extracts the parsing time from the overall time.]:E
\
DEER 032 4
SYNPUT 2.20)
) YACC 1.24 N
Figure 31. Parsing time reported by gprof N
by
::H
b)
'
¢
¥
\.:
~
, N
R R o A e T e TR P AT

PR R Tt P R A T SR R W A R 24 208 ato aus AVt ohin- a1k uil abi avy o7y Y] - ol a8 b a0 8 €2l el 000 3 Bt BB el st ok Call tufl Vak' Sad Wl ol tah Sgl v

41 W
0
DEER parses about four times faster than YACC. This speed advantage plus by

€ITUT TECOVEs y Costs about 25% more space (71K :: 55K).

-

.“.‘!lf'. et ‘)';‘1:_':1' C]

T

..
LB
* At

»
L

- e

~ N 7‘,' ._‘;.)

U

. . - g

) . o - O O WA AL . R - -~ pn o R W A O e
’il..q.!‘v'!'h“‘c.,.c ..l.‘-.l'. L, '..1.!.0.!"‘t‘.'l‘!’!"';‘.'m‘!'o‘"n '\"’n [1L Ko ...l..-'l‘ ol K X X .e. . N M M AN * o "' A Tl ‘... P U, g’.. ..‘..l'

e

CHAPTER 5

CONCLUSIONS

I have built a generator that produces a very fast parser with error
recovery. Based only on the grammar, the parser is guaranteed to recover from
any syntactic input error and will output a correct structure tree. In terms of
efficiency, user friendliness and maintainability, the generated parser contributes
significantly to the quality of software containing it. These design goals have
been met with only a very modest space cost over parsers that have no error

recovery.

The DEER parser generator requires an LL(1) grammar. Many existing
grammars are LALR(1) and compiler writers have come to rely on the power of
the LALR technique. Often, simple mechanical transformations can yield an
LL(1) grammar from an LALR(1) grammar [Griffiths1976); however, there are
clearly cases where this is neither possible nor desirable. There seem to be two
areas inviting further research — first, the need for a quality LALR(1) parser
generator. Second, there is a need for programs to assist in the grammar

transformation process.

I believe there is need for a new LALR(1) parser generator. It could be
based on an existing generator such as PGS or YACC. Corbett’s [1985] Bison,

which is similar to YACC, holds promise as a starting base because of its

- - ~ ; - W ATRT R AL LA A RO S 8, N WL WO A s e
LS !n J‘“l“.‘ l!"'.,‘ A -' o.o l\-.‘ \5' Ny .n..n. U RN SR U O X p 2 r A X X .l“‘-‘ KA ayn A

) &

gt abataBA #a YA b RS NA e e BAY - - PP T T T T T O T) & Ba¥ fat Wat {2t @at o 0 Bt Sa¥ WYY ey O
X LS 8.0 82" PaA WM R W Mo BN Wy My P, R W NN - VWU WO W WL W 0 Qa8 200 .8".8%0.0%

X}
3
’
bet!
43]
")
efficiency and clarity. Furthermore, it is in the public domain. The major ;
i
question is whether it would be easier to add error recovery to YACC or Bison, or ’
)
make PGS faster. Pennello’s [1986] work on making LALR parsing very fast '"'
should be considered before such a project is undertaken. 2‘:
Automating the grammar transformation process is desirable because a
tedious, erro: prone work is eliminated. A parser generated from the transformed ’)
grammar mzy be able to run significantly faster than a parser generated from the : '
LALR(1) grammar. ’
N
(%
There are several problems with transforming grammars. The most :
important problem is that, LL(1) languages are a proper subset of LALR(1) ':‘:f
]

languages, thus there must exist LALR(1) grammars that cannot be transformed.

.
e

Furthermore, it is undecidable whether an arbitrary LALR(1) grammar has an

equivalent LL(1) grammar; therefore, no program can tell us if the transformation

LY - o
q.,

can be accomplished.

‘o
The transformed grammar may not be transparent to the compiler ES_:{
writer. It would be much better to work only with the original grammar and insist e
that the transforming tool preserve actions. This is easily accomplished by 3 .‘
planting connection points in the grammar before transforming. ;:\:
Early work in the area was performed by Foster [Foster1968] who built . :
a program call SID. Its main purpose was to assist language designers in :
producing an equivalent grammar which could be parsed by a simple one-track :\'
parsing algorithm. The parser also had reliable error detection capability whereas N
hand written parsers had no assurances. SID first removes left recursion. Next a ' :
series of substitutions and factorings is performed in hopes of producing an LL ‘
grammar. If this step succeeds, a final pass is made for parsing efficiency. .
o
R
¥
L

B a0
T TG A T R S

(AR PUN ST AT U WP W WO W W ‘A 5 ogb B ptd g YV oh'%, RO RO RO W SRS

44 . sié:

Based on some of Foster’s ideas, I implemented some code to perform QY
the same three transformations: left recursion removal, left factoring and corner L]
substitution. The programs work on small simple test cases. Due to bugs in our ; '
ML compiler, the programs cannot transform larger grammars such as PASCAL oyt
and ADA. It will be interesting to learn whether complex grammars such as

ADA can successfully be transformed.

A B

4

AT

WL T

P

o --%

o il

A

-
0y

23

'~

g

PN

DTN, VW
e N AN
o

At

BB

-

'

‘7",‘-

et

5..

e AU A ARt A R AR T R .- R .pn
AL L e U o. Lot o Tl Lo e B " x - AC A LR,

Al %

-

RO A T O WO A MR XN M MO X

(AR R Y HARRAY KRR VN LN CRIUICH | LSS 1 0 0 At 8'a A 0Ya 0 Lt 0.8 lat 8.6 §a¥ 4 > et e

120" >) 2’0t 20 .2 A 0" Walt* ol § .0 § 0."

o
w
!
3
A
: .
o
o
’
]
I
BIBLIOGRAPHY]
s
"]
[Aho1986] Aho, A. V., R. Sethi and J. D. Ullman, Compilers Principles, =
Technignes, and Tools, Addison Wesley, 1986. oy
[Corbett1985] Corbett, R. P., ‘‘Static Semantics and Compiler Error =
Recovery’’, UCB/Computer Science Dpt. 85/251, Berkeley,)
June 1985. £
[Dencker1985] Dencker, P., User Description of the Parser Generating System h
PGS, Institut fur Informatik Universitat karlsruhe, 1985.).
[Dunn1981] Dunn, D. and W. M. Waite, SYNPUT A Tool for Processing "
Programming Language Syntax, Feb. 1981. ',*'
[Fischer1980] Fischer, C. N., D. R. Milton and S. B. Quiring, ‘‘Efficient c'::
LL(1) Error Correction and Recovery Using Only Insertions’’, fak
Acta Informatica 13 (1980), University of Wisconsin-Madison. 3
[Foster1968] Foster, J. M., ““A Syntax Improving Device’’, Computer =
Journal, May 1968. 3]
[Graham1982a] Graham, S. L., P. B. Kessler and M. K. McKusick, ‘‘gprof: a N
Call Graph Execution Profiler’, UNIX PRO.RAMMER'S 7
MANUAL 4.2BSD, Vol 2C, 1982. >
[Graham1982b] Graham, S. L., C. B. Haley and W. N. Joy, *‘Practical LR Error j.
Recovery’’, SIGPLAN Notices, 1982. "
[Gray1985a) Gray, R. W., A Brief Comparison of the Time and Space ok
Requirements of two LALR(1) Parser Generaiors- PGS and 't
YACC, University of Colorado, December 1985. ; ¥
(Gray1985b] Gray, R. W., “‘Comparing Semantic Analysis Efficiency of a 4
GAG Generated Compiler vs Hand Written Compilers’’,)
ECE690 Report, Department of Electrical and Computer !
Engineering, University of Colorado, Boulder, CO, Dec. 1985. it
[Gries1976] Gries, D., ““ERROR RECOVERY and CORRECTION - An 2
Introduction to the Literature’’, Compiler Construction - An)
Advanced Course Edited 2nd Ed, 1976. 2
[Griffiths1976] Griffiths, M., ‘““LL(1) Grammars and Analysers’’, Compiler "
Construction - An Advanced Course Edited 2nd Ed, 1976. -;:,
[Horning1976] Horning, J. J., ““What the Compiler Should Tell the User”’, o
Compiler Construction - An Advanced Course Edited 2nd Ed,)
1976. N
[Johnson1979] Johnson, S. C., ““YACC- Yet Another Compiler Compiler’’, :::
UNIX PROGRAMMER’S MANUAL Seventh Edition, Vol 2B, N
Jan 1979. -_::'
[Kastens1982] Kastens, U., B. Hutt and E. Zimmermann, GAG: A Practical "'
Compiler Generator, Springer Verlag, 1982. o1
2%
A
3

N
- - - » - - - - - » -0
.- .f‘. '.. r".q l'.‘p ‘,.“- P ' _f-;'.q‘(-*.p-{f.(- p '-’V‘ v-‘.- '.F.l' * -F'-' _, 8 Pal Gt Nl \-..v-. > .A"QI‘.-U..I.E\"

[McClurel1972]

[Pennello1986]
[Rohrich1980]
[Waite1983]
[Waite1985a])

[Waite1985b]

McClure, R. M,, “‘An Appraisal of Compiler Technology’’, in
Spring Joint Computer Conf., vol. 40 , AFIPS Press, Montvale,
NJ, 1972.

Pennello, ‘‘Very Fast LR Parsing’’, SIGPLAN Notices 21, 7
(July 1986).

Rohrich, J., ‘‘Methods for the Automatic Construction of Error
Correcting Parsers’’, Acta Informatica, 1980.

Waite, W. M. and G. Goos, Compiler Construction, Springer-
Verlag, 1983.

Waite, W. M., ““The Cost of a Generated Parser’’, Software—
Practice & Experience 15,3 (March 1985), 221-237.

Waite, W. M. and M. Hall, Private Discussions, 19835.

[y

A oL

-

“l{‘
T

C N

e
ot L

P A N

R T T

APPENDIX

This annotation pertains to the source code which follows. In this
description, program variables will appear in square brackets. The first step of the
formal description is to associate a terminal symbol with each parser state. This
is a shortest valid continuation of the string being parsed can be obtained by
advancing the parser to an accepting state. The continuation is defined by the
sequence of terminal symbols specified by AR, RD, RE, and RA instructions
encountered during the advance. To advance the parser to the end of parsing,
increment the state at each AC, AR, EO, RD, RE, or RA instruction. The state
should be set to L at a JE, JO, or JP instruction. At NC or NE, the state is
incremented and the new value pushed onto the parse stack. At NR, the state is

set to the value of the top element of the parse stack and this element is popped

off.

When an error is detected, parErr is called with two arguments: the
errant token ¢ [la] and, the parsing rule where the error was detected [rule].
parErr controls the recovery by arranging for the Anchor, Discarding and
Generating steps of the formal description to be carried out. First a call is made
to getanch to compute the anchor set D. Next n is deleted from the input by
calling advToAnch with the argument ¢ [la]. It returns the first acceptable token
t” which is saved in [AnchLa]. Finally, advparse is called to generate the string

of terminal symbols 6.

getanch is the automaton that carries out step 3 of the recovery. It
initializes its state by making a private copy [dstack] of the global parse stack

[Stk]. getanch then simulates parsing by following the shortest continuation p

"."\"'y,'-"n-" qf’—'_:-‘_ """

g
o

wops
gy

A e fo'Se o
“I}“ l.

O

T
. o

[N
s

P

b}

t‘:i 4

Yl

..,.
XA

22

v';' >

»

SRR

L)
‘l .l |i.'
PR

e

R A
AN
RAEANAa

10

*
S5 s

. .
«

-
[y

»
-

~e
2
S‘,\ﬂ

Ii':'f? o,

g

NS
7.

4

Fat
o
J-\J'

L
ey - . P .o . I - : _— M
,'I_'-‘;.f A .-'_.’--"--‘.' St ‘i’. L “‘- -, = o f‘-':-’ v f - "‘f"-. (
] A o 2 .

48

)

4

>

2

-
and simultaneously building the anchor set D [Anchors]. There are two steps for '?-",
F‘-

each state transition cycle. First, look at the current state ¢ [rule], and if the »
’

.I

automaton is in a state that requires looking at a director set, then add this set to

the anchor set. Second, perform a state transition. ;,.
.
advToAnch carries out step 4. It receives the errant token ¢ [errLa] and ’
returns the first acceptable token ¢ ” [la]. As a side effect, zero or more calls have '.:-;
been made 0 ih¢ lexical analyzer interface lexAttr. Note, if zero calls were made :}
to lexArtr, then it must have been the case thatr =t¢”. ’ -
ot
advparse carries out step 5. It is an automaton very similar to the :::\.‘
regular parser automaton (parselTR). It operates on the actual parse stack [Stk] i
with the following two differences. At each state transition cycle, a check is _!:_-
made to determine if the anchor token s ” [AnchLa] can be accepted in the current é:- '
state. If so, the automaton is terminated and the token ¢” is returned. The second ?_:'r_
difference is that when a token needs to be read, one is instead generated from the ,L
continuation (W), f (q).
When yyparse receives an unacceptable token, it calls parErr (a) to m
initiate the error recovery automaton. parErr receives a copy of the errant token ' 3
t [la] and the place where the error occurred [rule]. parErr sets ErrRecovering to ;: ‘
true, constructs a stack for the automaton advparse to simulate the state of the ‘:’:\
parser, computes the anchor set D [Anchors] by calling getanch, advances the !
input to the first token of the anchor set, by calling advToAnch (b), saves this .
token in t” [AnchLa] and, finally, returns an acceptable token to yyparse by ':
calling advparse (e f,g). -
-
While in error recovery mode, yyparse calls nexterm (1), who calls 'E
advparse (2b). Either a token is generated, or the global " [AnchLa] is returned ?
(3b,4). The global variable [AnchLa] holds the first input token matching some N,
s,
3

A A S N S A N2 A A A o S e b b Y N

D% VoY Sl

I iy

49 '

) »

. member of the anchor set. This must be saved because error recovery may need 5
)

to generate synthetic tokens before ¢” [AnchLa] can be accepted.

. advToAnch, must possibly discard the string of tokens N from the input

S A &3

2, string by calling lexAttr (c,d). The automaton advparse must generate the

X0

shortest string ¢ up to the anchor ¢” [AnchLa]. If ¢ is empty no tokens will be

¥ generated.

parErr should return ¢ [la] if only discarding has occurred otherwise .

parErr should return the head of 6 as obtained from advparse().

- 3
3
!
b
o
b
i
M k.
¥
) .
) "
» 3
1) y
- 4
: \
- .
\» -
D 3
, L)
:
-
; .
' i
’ +
.F [}
-)
A
5 L
W .
L] 1]
J h
] »
A}
. .
.
) N
:)

'~~ \t\- -r t\r.'f.-t\-r\.r.v' w
o

"'f f\f\f‘f Wy o n

__‘.'_\\\ R A A A

LA -\.x-»s.\-\.\. "

n

“\qf-

oty

. '\‘-‘h\‘u\'\.‘-

J'.-.r.- J'J‘f-
-

:;~‘ & ga¥ gl 1020 8a% Aa® 00t Ba¥ 100" 0a? et Ba¥alla? e But Ba% §.¢ o0 GuV Bav¥ §av 4.6 gad gae ot bt) S0 0% 0avadnvalat 02" 0u? Be® 0a'. dav fav Sat gat gy gav g _"»..” a7 ant A’ At ba: pa o,
o:]
' y
¢ X
» 50 ’ ;
|.
t:: #include “errh"” '
! extern POSITION curpos; advparse.c
#include "macrosh” /* PUSH POP ACTION ... %/ :
. short
o choose(set))
¥ short set, :
o /™ Pick the first terminal of a of Director set, set. ‘
o ** On emry- '
\ . set=Director set from which to choose ,
& . On exit—
5 b returns terminal code for the chosen terminal
*/
i (|
& register DECTYPE *dirSet = virtDir;
¥ short sym;
¢
> for(sym=1; sym<=NSYMS; sym++)
) IF_IN(set.sym)
A\ break; :
if¢sym > NSYMS))
N PANIC("choose: 1erminal not found™); Y
! DB(CHOOSE,("choose: returns token %s(%d) from set %od\n",tokCod(sym), sym.set));
;. return(sym);
‘N } h
- void wkgen() { DB(TOKGEN,("tokgen\n"));}
% char *malloc();)
:: short ;
- advparse() d
! r
** Advance the parser 10 accept the anchor
J ** On entry-
- s Stk{1.Sp)=parser stack
X e Stk[Sp] indexes the rule detecting the error)
N s+ On exil~ :
b Stk[l.Sp]=repaired parser stack .
. . Stk[Sp] indexes the rule to be interpresed ‘
%
** DEP:
" ** On entry- .
haid AnchLa coruains first token maiching an anchor. Advparse found
N * it by discarding inpw up to anchor 1oken.
., % 0" a"l_
W b if Anchla is member of director set- ErrRecovering=0 <
L return{Anchla)
‘ . else loop until we 1okgen (nT==1), then rewrn it (genla).
15 */
.:. (
- register DECTYPE *dirSet = vinDir;
N static char emsg[] = "Generating token \"%os\"";
» char *p;
b short genla; I* look ahead generated */
short rle,i;
. short nT=0; I* no newToken generated ye!, used only by DEP */ N
_ DB(ADVPAR,("AdvPar: rule Op[rule] Dset[] Darum[] Stk befor swichw"™)); _
4 do {)
vf rule = Stk[Sp]; .
Y
DB(ADVPAR ("%ed\us\tFod\%od\”,
" rule, instrCod(Op[rule]), Dset[rule).Datum[rule]));
DBFOR(i=0,i<=Sp.i++) !
DB(ADVPAR,(" %d" SKk[i])); K

..q TR .,.'. - .,; “(,.'. .

e A

. ‘ LNt aa Y S LI ¢ A Y 9 " 2 R NN N WruT,, ” 0 9 Ua Rn " NA" ™o W -
DB(ADVPAR.("\n"));
#include “opcase.i” /* shorthand for case labels below */
switch(Op[rule]) /* CHECK SYMBOL */

{
AR JE J1 JO RD RE RA

IF_IN(Dset[rule).AnchlLa) goto siopFound;
break;

ARS JES JIS JOS RDS RES RAS
if(Dsetfrule}==AnchLa) goto stopFound;
break;

AC EO JP NC NE NR NES NRS EOS

break;

default:

PANIC("advparse: default case”);

}

#ifdef DEP /* all actions are done co-routine in directexec parser */
#define ACTION
flelse
#define ACTION action(Datumfrulc])
#endif
" #define JMP Sik{Sp}=Dawmrule]

Stk[Sp]++; I* next rule */
switch(Op{rule])
{

AC

RD RE genla=choose(Dset[rule]);tokgen();nT=1; break;
AR RA genla=choose(Dset[rule]);tokgen()inT=1; ACTION; break;
RDS RES genla = Dser{rule]; tokgen();nT=1; break;
ARS RAS genla = Dsetfrule}; tokgen();nT=1; ACTION; break;

51

...advparse

ACTION; break;

NES NC NE PUSH; break;

NRS NR
JOS JES JP JO JE
JIS EOS JI EO
default:
PANIC("advparse: default of parsop[rule]”);
}

#ifdef DEP
}while(Sp!=0 && nT==0);
I1(Sp==0) printf("WARNING!! advparse: exit from while loop Sp=0\n");
DB(ADVPAR,("ADVPAR, genLa=%s(%d)\n",1okCod(genla),genla));
If((p=malloc(sizeof(emsg)+10)) = NULL) /* for loken expansion !!!! *
print{("parErr: malloc failed\n”);

else
{
sprintf(p, emsg, tokCod(genla));
message(WARNING,p,0,&curpos);
return(genla);
#lelse
)whlile(Sp!=0);
printf("WARNING!! advparse: Exit from while loopSP=0\n");
#endif
stopFound:
ErrRecovering = 0; /* can conlinue normal parse now */
DB(ADVPAR,("ADVPAR End Recovery,retumns genLa=%s(%d)\n",tokCod(AnchLa),AnchLa));
return(AnchlLa);
}

: ¢ N W R A L W TN ST TRy -y] AL IE T) AR LN
PUNCIRCTY TSI NN b S0 T ML Mt i s o A, P, P, Bo o, 1300, L N o R Y

POP; break;
JMP; break;
cort /break;

/

"l ¥ \"’n*'ﬁ‘_..; o

[R I L

e
oY 1y 5“

{??,

-
P
<

5{?. (¥
2 & % !

S B

-
Pid -".4,'/',(& i

T S W Y
St

»

.
LA
P

te
s

s
P

e

P
2 S

7

XA L] @

R AN N R A R N NI R L TNy

#include “"macros.h”

void

getanch()

/* Compute the anchor set getanch.c
** On entry-

bl Stk(].Sp]=parser stack

b Stk[Sp] indexes the rule detecting the error

** On exi—

* Anchors=anchor set
*/

{

register DECTYPE *dirSet = vintDir;
short dstktop; /* dumvuny parse stack */
short dstack{MAXSTK];

short rule,i;

for(i=1; i<=NSYMS; i++) Anchors[i] = 0; /* zero Anchors */

dstkiop = 0; /* copy valid portion of Stk */
DB(GETANCH,("getanch:stack= "));
while(dstktop<Sp) {
dstktop++;
dstack(dstkiop}=Stk[dsikiop};
DB(GETANCH.("%d ".Stk[dstktop])};

}
DB(GETANCH,("™\n"));

do {
rule = dstack[dstktop]++; /* assume get ready for next instr */

#include "opcase.i”

switch(Op{rule]) 1* SEARCH — build Anchor Set for this production */
{

/* does JI belong here??? */
AR JE 71 JO RD RE RA
for(i=l; i<=NSYMS; i++) I* add elements of Dir set 10 Anchors */
IF_IN(Dsetfrule], i)
Anchors[i] = 1;
break;
ARS JES JIS JOS RDS RES RAS
Anchors[Dset[rule]] = 1; 1* add this symbol to Anchors
break;

AC EO JP NC NE NR NES NRS EOS
break;

default:
PANIC("getanch: default™);

}

switch(Op[rule)) /* MOVE — shortest continuation */

{
JOS JES JP JO JE
dstack[dstktop] = Dawum{rule]; ™* Jump */
break;
NES NC NE
dstktop++; dstack[dstkiop] = Darum[rule}; * Call
break;
NRS NR
dstktop—; /* Return */
break;
ARS EOS JIS RDS RES RAS RD RE AC AR RA J1 EO

N B S R S R

]
’
(W]
. 53 A
» ".
break; 1% does JI belong here???* | ...getanch o
defzult: :;
PANIC("getanch: default case™), a
}).
\ }while(dstkiop!=0); 3
‘, #ifdet DEBUG "~
DB(GETANCH,("anchor ser ")) N
for(i=1; i<=NSYMS; i++)if(Anchors[i]) DB(GETANCH,("%s(%d) ",tokCod(i).i)); r:
DB(GETANCH,(™n")); y
#endif I
¥
&
¢
“,i
)
. .“
- t.
oy
Wy
V
h .‘
- Y
h ¢
)
advToAnch.c 3
24
°F
#include “errh”
extern POSITION curpos; t :
#include "macrosh” et
short]
advToAnch(errLa) A
short errLa; :_,
/‘ l.:
** Advance the inpu! text to an anchor -~
** On entry- : A
. errLa=first unaccepled ioken T
. Anchors=se1 of possible anchors
** On exi~ o
b return first member of Anchors encouniered g
* / "}.
w
short la = errla; ?i X
while(! Anchors[ia]) e
message(WARNING, "Discarding token",0,&curpos); o
DB(ADVANCH, ("ADVANCH: discarding token Gos(Fod)\n",10kCod(la).la)); \'
ia = lexAtx(); \

1
return(la); >
) ¥

]
3
~
~
"~
I
'Y,

(

¥,

A s T Rt S 0 Y ST O R RN 0 R T R S Tt st ety ettty e e ! Warlarafoatnteatneln e oteh,) Q‘

PR T R R R W . T TG T O T RN R N A SO WO X W PO P N R R R R VN O W T NN WO R R N N UV WY

%
)
l. N
". i
W (Q
M 54 . ;
Zl‘ ’
1'. #include "errh” parErr.c J
v extern POSITION curpos;
#include "macros.h”
9 char *malloc(); ¢
:‘ 1. {
.: ** returns the loken that was expecied when error occurred :
28 x%
N ** eptry— la is errant token
M ** gxit~ Anchla has first usable 1oken of input, ie: in the anchor set
** return a token that the parser would have accepied if parser
." b saw tha! token instead of la.
] * /
N short y
4 parErr{la,nule) ;
W short rule,la;
N {
static char errmsg{] = "Parse error in rule %d";
3 char *p;
R int icas; "
X static short *caseMap; ‘
M #isdef DEP
‘s:i short *s;
Wy ErrRecovering = 1; 1* nexterm examines, advparse clears it */
/.
0 ** Provide a compatible stack for the error recovery automaton. 4
; ** Need 10 translaie between compact case labels, inio
{ ** sparse siates. This implies a mapping table. We built it
‘0: ** once per run if error recovery is needed.
‘I' .y ¢
‘:' #define NC 7
Rt #define NE 8
‘ #define NES 20
M i1 (caseMap=(short *)malioc(300)) == NULL)
! print{("parErr: malloc failed\n”™);
> cas=0;
i for(i=0; i< 728; i++) : 1
s, f(Op[i}J==NE Il Op[i]J==NES Il Op[i}]==NC)
u caseMap[cas++] = i;
g s = DEPStack; /* provide a stack for automaion */
" Sp=10; d
while(s<DEPSp) 3
) { A
~ printf(" %d ", caseMap[*s]); .
[Sk[Sp++] = caseMap[*s++]; :
}
7 printf(™\n);
o #endif
[i1 (p=malloc(sizeof(errmsg)+8)) = NULL) /* 8 for decimal expansion */ s
- printf("parErr: malloc failed\n™);
", else ‘
A

{

sprintf(p, errmsg, rule-1);

"w message(ERROR,p.0,&curpos);

I* message(ERROR, &curpos, "Symiax error”);*/ \

4 DB(PARERR,("Parse crror in rule %d la=%d\n", rule-1.la)); :

‘o Sk[Sp] = rule; 1% overwrile lop with curren! rule */
getanch();

KX AnchLa = advToAnch(la); /* save the first useful token after discarding®/

o return(advparse());

\ L N o . R S T T RS PR LTS,
‘J\‘.‘l',’\'.‘t‘.‘l-‘l.’l. q‘l. -.Q.- e M 20 0 M0 .A -0 ‘ a -Q .., . .,O.‘,I .0.0, bl “.& "- S N el ; " b & ‘n '

v « - . pav . _gav LA MO 0 U T . . " Ra% §.% fat $a0. 00t Bat ol KA A EWy . -, L - W ™ < * Y L
U gt gt (W X & ¥ ? ! -

LA
g SN

»
“

i 55)
A

#define SYNPUTEOF 0 ::,

#include " g

void e parseDEP.c)
poflo(r) >

short r; ‘\)3:

{ "'s.

printf("**Stack overflow pushing %d\n”, 1);)

exit(3);
}

short DEPStack[MAXSTK], *DEPSp;

b d
T

l\ +
short N,
nexterm() :.
{ iu."
return(ErrRecovering?advparse():lexAtr()); P,
) Iyt
]
void o,
{yparseo "‘:,-
register DECTYPE *dirSet = virtDir; ‘,::
register short *p; “’
register short la; f"
#ifdef DEBUG 4
#define PU(x) {if (DEPSp = &DEPSuack|MAXSTK]) poflo(x)\ i

Z2

*DEPSp++ = x)\

DB(PARDEP,("PARDEP: push(%d) ".x)):\ o'
DBFOR(p=DEPStack,p<DEPSp,p++)\ s,
DB(PARDEP,("%d ".*p))\)
DB(PARDEP,("\n"))\
))
#else :\ ,
#define PU(x) *DEPSp++ = x o
#endif ?\':
t‘,\ \
INSERIALnum != serialNum) '
printf("mismatch between Direch and Direc.c\n”); iy
!
DEPSp = DEPStack; *DEPSp++ = 0; la = nexterm(}; <
goto LO; ;
pppop: s
#ifdef DEBUG .
DB(PARDEP,("PARDEP: pppop: ")); -~
DBFOR (p=DEPStack,p<DEPSp,p++)]
DB(PARDEP,("%d ",*p)); NN
DB(PARDEP,("case: %d\n",*(DEPSp))); 5
#endif)
-
switch (*(—DEPSp)) { <0
case 0: printf("\ncase 0:\n");break; N
#include “tbli" ®
default: printf("default case, \n"); o

}
if(da != SYNPUTEOF)
printf("extra stuff \n"};
DB(PARDEP,("PARDEP: PARSE SUCCESSFUL\™); 1

W

&,

o

:e: 56 v
2

i f#define SYNPUTEOF 0

:},.'r: #define MP Sik[Sp]=Datum|rule] parselTR.c
i #include "macros.h

void

\; vyparse()

k> t
& register DECTYPE *dirSet = vinDir;
;: register short larule,i;

o ISERIALnum != serialNum)

o printf("mismatch between Direc.h and Direc.cn”™);

la = lexAtr(); /* init LookAhead */

v DB(PARITR,("rule Opjfrule] Dset[] Datum{] Stk befor switchwn"));

W Sp = 1; SKkISp] = §;
M do {
A rule = SKk[Sp)++; /* ge: current rule and prepare for next */
: X DB(PARITR,("%d\ %os\tFed\%d\ ",

rule, instrCod(Op{rule]). Dset[rule],Datumnirule]));
DBFOR(i=0,i<=Sp,i++) DB(PARITR,(" %d",Sk[i])};

. DB(PARITR,("\n"));
: #linclude “opcase.i” I* shorthand for case statemens */
'-’ﬁ' switch (Opfrule]) {
i ARS AR action(Datum(rule]);
N /* Fall thru */
‘o RDS RD la=lexAtx();
bresk;
" RE IF_NOT(Dset[rule],la)
) la = parEm(larule);
| else la=lexAtx();
L0 break;
:' \ AC action(Datum{rule));
R break;
RA IF_NOT(Dsetfrule))a) 12 = parErmr(larule);
T else { action(Damm[rule]); la=lexAmx(); }
I.: break;
i NC PUSH
9"‘ break;
;0:'. NE IF_NOT(Dset[rule}.la) la = parErr(larule);
ol ei~ "USH
break;
P ¥ NR If (Dset[rule] != 0))
, IF_NOT(Dsetjrule}la) la = parErr(larule);
Z"' else POP;
Hh else POP;
|:| [ekennnnE
' break;
JMP;
" 3 break;
o I IF_IN(Dset[rule].la) JMP;
: break;
v, JO IF_NOT(Dset[rule],la) IMP;
¢ - break:
oy reax,
* JE IF_NOT(Dsetfrule).la) 1a = parErr(tarule);
- else JMP;
- break;
. EO 1F_NOT(Dset[rule],la) l1a = parErr(larule);
i break;
', RES if(Dset[rule]!=la) la = parErr(larule);
j else la=lexAtx();
’ break:
gl RAS if(Dset[rulc)!=la) la = parErr(larule);
d else { action(Datum[rulc}); la=lexAur(); }
‘|l: break;
: . NES if(Dsetfrule)i=la) la = parErr(larule);
1.!
R
b
R0
R
"

* » - - LTS B R RV - = T Rt Nt B B e RV b R e Y W g
b ‘l.o‘l’u l...l..‘c.. O 0’.‘! al.»'l...l'..". 4% 00 Y, 470 8% l..".‘.',... l.- l'-,"..l'..l‘., % '0 .. p,"', '..0’.. .'. ! .,0'..., 578,079,0%, . .00 Y X b .0".‘0..

o veis e R A T U T R R T R T O T R N A WL WG v O T R R R DO R O R T T T DV DV O OV Iy
' (]
(s
A ieh
»
\ ”
~ 57 ‘:]
eilse PUSH i
break; e
NRS if (Dsetirule] != 0) -
if(Dsetfrule}!=la) la = parErr(la,rule); ;
else POP, i
else POP; Q
break; LY !
ns If(Dsetfrule}==la) JMP; e,
break; Fo]
)OS If(Dsetfrule]!=la) IMP; oy
break; <
JES if(Dsetfrule])!=la) la = parErr(larule); X
else JMP; X
break: ; 4
EOS if(Dsetrule]!=la) la = parErr(la.rule);)
break; gl
default: PANIC("default of parser™);]
} -
} while (Sp > 0); »
if(la != SYNPUTEOF) 0

- L]
I OO O o N

LV R R LY LA

o §

AN

printf("extra stuff afier complete program\n”);
DB(PARITR,("PARITR: PARSE SUCCESSFULW"));

-"- n.,_'l -"- .-*‘*_‘ - '\.y \'

o

L N TV
-'x»'u X

.‘,J

o

»

e

5y,

.
«

._‘::

L

L&

=, .
X

R '-‘,;P. h

o

"l

o
s

L ¢
’

ALY

2N

itA

.

.. RN 2 fv“‘(,-fl.v_.'\f

o s

macros.h

#include <sidio.h>

#define LEX 0x0001
#define ACT 0x0002
#define ADVANCH 0x0004
#deflne CHOOSE 0x0008
#define TOKGEN 0x0010
#define ADVPAR 0x0020
#define GETANCH 0x0040
#define PARERR 0x0080
#define PARDEP 0x0100

#define PARITR 0x0200

#ifdet DEBUG

#define DB(whatrest) if(Debug& what) prind rest
#define DBFOR(a,b,c) for(a;b;c)

#else

#define DB(what.rest)
#define DBFOR(a,b,c)
#endif

#idefine PANIC(c) {prind("PANIC: %s, aborting\n", c); fflush(stdout);abort();}

#idefine MAXSTK 128
/* DBFOR(p=DEPStackp<DEPSpp++) */

#idefine PUSH {if(Sp>=MAXSTK) PANIC("Parse stk ovrflo\n")}\
Sp++; Stk[Sp] = Datum[rule];\
DB(PARITR,("PARITR: push(%d) ",SKk[Sp]))\
DB(PARITR,("™\");\

}
#define POP Sp—
/I
#define POP {Sp—; \
DB(PARITR ("PARITR: pop(%d)\n" Stk(Sp]))\
*)
#include "Direc.h” /* parameters of director set— NUMSYMS and WIDTH */

1* Check membership in director set by set number and symbol */
#define IF_NOT(set,sym) M(!(dirSet{sym+(set /WIDTH)*NSYMS |&(1<<(set%WIDTH))))
#define IF_IN(set,sym) WM((dirSet[sym+(set/WIDTH)*NSYMS)& (1<<(set%WIDTH))))

/% EXTERNAL DECLARATIONS */

vold getanch(), action(), yyparse(), tokgen();

short parErr(), nexterm(), lexAur(), advToAnch(), advparse(), choose();
char *instrCod(), *tokCod();

extern short Anchors{};
extern short Op(}, Dset[], Datum(];

extern short Sp, AnchlLa, ErrRecovering;
extern short Stk(];

extern short DEPStack{], *DEPSp,
extern short Debug, serialNum;

ROV TV ES LR TN VEVGS G G G M Bt VA RSN A ONY

59

ITR is interpretive parser, DEP is directly executing parser
GRAM= pascalg Makefile
CTL= pascal.cd

CF = -0 -DDEBUG

CFLAGS= -1. -I$(INCL) $(CF)

LIBS= $$CST Nlib /frame.a

INCL= $$CST/include

XSRC= 3CST Nlib/lex.c $$CST /ib /idn.c $SCST /src/lib/int.c $SCST /src /ib /s.c\
$SCST ssrc Nlib /fpt.c $$CST /sre Nlib /sre.c $8CST /ste /lib /err.c $SCST /ib/csm.c

HDRS= Direc.h macros.h
GENSRC= lexAttr.c advparse.c advToAnch.c parseDEP.c instrCod.c \

W
getanch.c main.c parErr.c tokCod.c action.c \ -,
data.c parErr.c advparse.c Direc.c :."

DIRSRC= parseDEP.c

«snl
ITRSRC= parse[TR.c 5
GENOBIJ= lex.0 idn.c csm.o lexAwr.o advToAncho instrCod.o \ Y

getanch.o maino tokCod.o action.o Direc.o data.o \
Op.o Dset.o Datum.o
DIRORBJ= parErrDEP.o advparseDEP.o parseDEP.o
ITROBIJ= parErrITR.0 advparseITR.0 parseITR.o
SCRIPTS= OpDsetDamum.awk action.awk dir.awk tl.awk 13.awk toklex.awk

dep: Direch $(GENOBJ) $(DIROBJ)
cc $(CFLAGS) -DDEP $(DIROBI) $(GENOBJ) $(LIBS)
myv a.out dep

. -
5

i $(GENOBJ) SATROBI) macros.h o
cc $(CFLAGS) S(ITROBJ) $(GENOBIJ) $(LIBS) Sy
mv aout itr -i‘
yac: ylex.o driver.o y.tab.o yylex.o idn.o esm.o o7
cc $(CFLAGS) ylex.o driver.o y.tab.o yylex.o idno csm.o $(LIBS) —o yac F'.
-

symbols: pascal.par
sed —f $SHOME /bin /yacc.sed pascal.par | sort | uniq > symbols

parser.y: newcodes pascal.par
$SHOME /bin /mkyacc.sh newcodes pascal.par

y.tab.c y.tab.h: parser.y
yacc —d -v parser.y

print:
print Makefile $(HDRS) $(GENSRC) $(DIRSRC) $(TTRSRC) $(SCRIPTS)

lexOut: tables
cvtdir <iables
CTL.x: $(CTL) lexOut
(cat $(CTL); sort lexOut) >CTL.x

term.h: CTL.x
-In $$HOME /bin /VSFILE .
-In $SHOME /bin /ZERDAT .

Ky
bgla CTL.x ;.r:
rm VSFILE ZERDAT ey

"',x

tokCod.o: tokCod.c tokCod.i ‘_':"
cc —¢ wkCod.c NN

lexMap.i: newcodes
sort +2 -n newcodesi awk —f tok.lex.awk
newcodes

8 *at B0 3,

120’ % 4% 07 Ea 0 0.8 020 Bat a¥ 1aV 050 Ve e ol W s M N N MW Y W N T I L OO WA

sort +1 —n newcodes! awk -f tok.lex.awk

action.o: action.c action.i
¢¢ —C acton.c
cc —c $(CFLAGS) $<

idniblh csmiblh: newcodes
adunit —f —c newcodes

lex.o: wrm.h lexMap.i

cc —¢ $(CFLAGS) lex.c
main.o: tbl.i
parseDEP.o: tbl.i

1intDEP:
lint -1. ~-I$(INCL) -DDEP $(XSRC) $(GENSRC) $(DIRSRC)

lindTR:
lint =I. -ISANCL) $(XSRC) $(GENSRC) $TTRSRC)

parErDEP.o: parEmr.c
cc —¢ $(CFLAGS) -DDEP parErnr.c
mv parEmr.o parErrDEP.o
parEnITR.0: parEmrc

cc — $(CFLAGS) parErrc
mv parErr.o parEnITR.0

advparseDEP.o: advparse.c
cc —c $(CFLAGS) -DDEP advparse.c
mv advparse.o advparseDEP.o
advparselTR.o: advparse.c
cc — $(CFLAGS) advparse.c
mv advparse.o advparseITR.o

csm.o: csmtbl.h
cc $(CFLAGS) -DINIT — $$CST /lib/csm.c

idn.o: idntbl.h
cc $(CFLAGS) -DINIT —c 3CST /lib/idn.c

tables: $(GRAM)

synput $(GRAM) > $(GRAM).out
tbl.i: tl.awk 3.awk tables
expand RD 5* 10 RDS 5

awk —f tl.awk tables >xtbl
awk —f 3.awk xtbl >tbli;

to get Op.c Dset.c Datum.c
awk —f OpDsetDatum.awk xtbl
m -f xtbl

Direc.h: tables
cvidir <tables

Direc.c: tables

cvidir <tables

cleanall: clean
rm -f cvidir tables newcodes tokCod.i lexMap.i parser synputh

clean:

rm —f tbl.i dep itr $(GENOBJ) S(TTROBJ) $(DIROBJ) \

LA NEY

SR A RSP YR
" NS BN
AN NSV T FACHAN

60

F -*-"."-!'J"-'.\.rl

] . {’{"4"

~x

- - g

by

;A

[9)

@

?’ ‘gu‘/ o

A A

h @
‘)<I .

WA

] O
0 K R X

o L o o]
2

s A
"_ 5

-
,J

n ‘." .'. 'l: ‘..' 3

x
-

Lo
S5

2o

« > A
D
«®

g
BN

